Optimal deployment of indoor wireless local area networks

We present a two-phase methodology to address the problem of optimally deploying indoor wireless local area networks. In the first phase, we use Helmholtz’s equation to simulate electromagnetic fields in a typical environment such as an office floor. The linear system which results from the discretization of this partial differential equation is solved with a … Read more

A Joint Demand and Supply Management Approach to Large Scale Urban Evacuation Planning: Evacuate or Shelter-in-Place, Staging and Dynamic Resource Allocation

Urban evacuation management is challenging to implement as it requires planning and coordination over a large geographical area. To address these challenges and to bolster evacuation planning and management, joint supply and demand management strategies should be considered. In this study, we explore and jointly optimize evacuate or shelter-in-place, dynamic resource allocation, and staging decisions … Read more

Political districting to minimize cut edges

When constructing political districting plans, prominent criteria include population balance, contiguity, and compactness. The compactness of a districting plan, which is often judged by the “eyeball test,” has been quantified in many ways, e.g., Length-Width, Polsby-Popper, and Moment-of-Inertia. This paper considers the number of cut edges, which has recently gained traction in the redistricting literature … Read more

Fast cluster detection in networks by first-order optimization

Cluster detection plays a fundamental role in the analysis of data. In this paper, we focus on the use of s-defective clique models for network-based cluster detection and propose a nonlinear optimization approach that efficiently handles those models in practice. In particular, we introduce an equivalent continuous formulation for the problem under analysis, and we … Read more

Improving Column-Generation for Vehicle Routing Problems via Random Coloring and Parallelization

We consider a variant of the Vehicle Routing Problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation based linear-programming relaxation … Read more

A tailored Benders decomposition approach for last-mile delivery with autonomous robots

This work addresses an operational problem of a logistics service provider that consists of finding an optimal route for a vehicle carrying customer parcels from a central depot to selected facilities, from where autonomous devices like robots are launched to perform last-mile deliveries. The objective is to minimize a tardiness indicator based on the customer … Read more

Commodity Prioritized Maximum Dynamic Multi-Commodity Flow Problem

Due to different disasters, natural or men made, world is facing the problem of massive damage of life and property. To save the life of maximum number of evacuees, an efficient evacuation planning is essential. Prioritization is the process of deciding the relative importance or urgency of things or objects. It helps to focus on … Read more

Optimal Steiner Trees Under Node and Edge Privacy Conflicts

In this work, we suggest concepts and solution methodologies for a series of strategic network design problems that find application in highly data-sensitive industries, such as, for instance, the high-tech, governmental, or military sector. Our focus is on the installation of widely used cost-efficient tree-structured communication infrastructure. As base model we use the well-known Steiner … Read more

The Non-Stop Disjoint Trajectories Problem

Consider an undirected network with traversal times on its edges and a set of commodities with connection requests from sources to destinations and release dates. The non-stop disjoint trajectories problem is to find trajectories that fulfill all requests, such that the commodities never meet. In this extension to the \NP-complete disjoint paths problem, trajectories must … Read more

A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In particular, convergence is not provably guaranteed for nonconvex network optimization problems … Read more