A quasi-Newton proximal splitting method

A new result in convex analysis on the calculation of proximity operators in certain scaled norms is derived. We describe efficient implementations of the proximity calculation for a useful class of functions; the implementations exploit the piece-wise linear nature of the dual problem. The second part of the paper applies the previous result to acceleration … Read more

A discrete L-curve for the regularization of ill-posed inverse problems

In many applications, the discretization of continuous ill-posed inverse problems results in discrete ill-posed problems whose solution requires the use of regularization strategies. The L-curve criterium is a popular tool for choosing good regularized solutions, when the data noise norm is not a priori known. In this work, we propose replacing the original ill-posed inverse … Read more

AINVk: a Class of Approximate Inverse Preconditioners based on Krylov-subspace methods, for Large Indefinite Linear Systems

We propose a class of preconditioners for symmetric linear systems arising from numerical analysis and nonconvex optimization frameworks. Our preconditioners are specifically suited for large indefinite linear systems and may be obtained as by-product of Krylov-subspace solvers, as well as by applying L-BFGS updates. Moreover, our proposal is also suited for the solution of a … Read more

Study of a primal-dual algorithm for equality constrained minimization

The paper proposes a primal-dual algorithm for solving an equality constrained minimization problem. The algorithm is a Newton-like method applied to a sequence of perturbed optimality systems that follow naturally from the quadratic penalty approach. This work is first motivated by the fact that a primal-dual formulation of the quadratic penalty provides a better framework … Read more

Sparse Approximation via Penalty Decomposition Methods

In this paper we consider sparse approximation problems, that is, general $l_0$ minimization problems with the $l_0$-“norm” of a vector being a part of constraints or objective function. In particular, we first study the first-order optimality conditions for these problems. We then propose penalty decomposition (PD) methods for solving them in which a sequence of … Read more

Interior-Point Methods for Nonconvex Nonlinear Programming: Primal-Dual Methods and Cubic Regularization

In this paper, we present a primal-dual interior-point method for solving nonlinear programming problems. It employs a Levenberg-Marquardt (LM) perturbation to the Karush-Kuhn-Tucker (KKT) matrix to handle indefinite Hessians and a line search to obtain sufficient descent at each iteration. We show that the LM perturbation is equivalent to replacing the Newton step by a … Read more

Solution of monotone complementarity and general convex programming problems using modified potential reduction interior point method

We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition is satis ed. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation … Read more

Packing Ellipsoids with Overlap

The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact … Read more

Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions

In many data-intensive applications, the use of principal component analysis (PCA) and other related techniques is ubiquitous for dimension reduction, data mining or other transformational purposes. Such transformations often require efficiently, reliably and accurately computing dominant singular value decompositions (SVDs) of large unstructured matrices. In this paper, we propose and study a subspace optimization technique … Read more

On Differentiability Properties of Player Convex Generalized Nash Equilibrium Problems

This article studies differentiability properties for a reformulation of a player convex generalized Nash equilibrium problem as a constrained and possibly nonsmooth minimization problem. By using several results from parametric optimization we show that, apart from exceptional cases, all locally minimal points of the reformulation are differentiability points of the objective function. This justifies a … Read more