Nonoverlapping Domain Decomposition for Optimal Control Problems governed by Semilinear Models for Gas Flow in Networks

We consider optimal control problems for gas flow in pipeline networks. The equations of motion are taken to be represented by a first-order system of hyperbolic semilinear equations derived from the fully nonlinear isothermal Euler gas equations. We formulate an optimal control problem on a network and introduce a tailored time discretization thereof. In order … Read more

An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning

Distributed optimization algorithms are essential for training machine learning models on very large-scale datasets. However, they often suffer from communication bottlenecks. Confronting this issue, a communication-efficient primal-dual coordinate ascent framework (CoCoA) and its improved variant CoCoA+ have been proposed, achieving a convergence rate of $\mathcal{O}(1/t)$ for solving empirical risk minimization problems with Lipschitz continuous losses. … Read more

On the use of third-order models with fourth-order regularization for unconstrained optimization

In a recent paper, it was shown that, for the smooth unconstrained optimization problem, worst-case evaluation complexity $O(\epsilon^{-(p+1)/p})$ may be obtained by means of algorithms that employ sequential approximate minimizations of p-th order Taylor models plus (p + 1)-th order regularization terms. The aforementioned result, which assumes Lipschitz continuity of the p-th partial derivatives, generalizes … Read more

The extensions of Yuan’s lemma and applications in S-lemma

In this paper we extend a lemma due to Yuan from several aspects. A new proof of Yuan’s lemma is given. A rank-one decomposition of positive semidefinite matrix is further developed. With the extended rank-one de- composition results, we generalize the Yuan’s lemma to general quadratic function systems, interval quadratic function systems and quadratic matrix … Read more

Probabilistic Variational Formulation of Binary Programming

A probabilistic framework for large classes of binary integer programming problems is constructed. The approach is given by a mean field annealing scheme where the annealing phase is substituted by the solution of a dual problem that gives a lower (upper) bound for the original minimization (maximization) integer task. This bound has an information theoretic … Read more

A derivative-free Gauss-Newton method

We present DFO-GN, a derivative-free version of the Gauss-Newton method for solving nonlinear least-squares problems. As is common in derivative-free optimization, DFO-GN uses interpolation of function values to build a model of the objective, which is then used within a trust-region framework to give a globally-convergent algorithm requiring $O(\epsilon^{-2})$ iterations to reach approximate first-order criticality … Read more

Adaptive Sampling Strategies for Stochastic Optimization

In this paper, we propose a stochastic optimization method that adaptively controls the sample size used in the computation of gradient approximations. Unlike other variance reduction techniques that either require additional storage or the regular computation of full gradients, the proposed method reduces variance by increasing the sample size as needed. The decision to increase … Read more

Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations

Machine learning (ML) problems are often posed as highly nonlinear and nonconvex unconstrained optimization problems. Methods for solving ML problems based on stochastic gradient descent are easily scaled for very large problems but may involve fine-tuning many hyper-parameters. Quasi-Newton approaches based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) update typically do not require manually tuning hyper-parameters but … Read more

Sieve-SDP: a simple facial reduction algorithm to preprocess semidefinite programs

We introduce Sieve-SDP, a simple algorithm to preprocess semidefinite programs (SDPs). Sieve-SDP belongs to the class of facial reduction algorithms. It inspects the constraints of the problem, deletes redundant rows and columns, and reduces the size of the variable matrix. It often detects infeasibility. It does not rely on any optimization solver: the only subroutine … Read more

Convergence rates of accelerated proximal gradient algorithms under independent noise

We consider an accelerated proximal gradient algorithm for the composite optimization with “independent errors” (errors little related with historical information) for solving linear inverse problems. We present a new inexact version of FISTA algorithm considering deterministic and stochastic noises. We prove some convergence rates of the algorithm and we connect it with the current existing … Read more