A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem

The main task of genetic regulatory networks is to construct a sparse probabilistic Boolean network (PBN) based on a given transition-probability matrix and a set of Boolean networks (BNs). In this paper, a Bregman alternating direction method of multipliers (BADMM) is proposed to solve the minimization problem raised in PBN. All the customized subproblem-solvers of … Read more

MIP-Based Instantaneous Control of Mixed-Integer PDE-Constrained Gas Transport Problems

We study the transient optimization of gas transport networks including both discrete controls due to switching of controllable elements and nonlinear fluid dynamics described by the system of isothermal Euler equations, which are partial differential equations in time and 1-dimensional space. This combination leads to mixed-integer optimization problems subject to nonlinear hyperbolic partial differential equations … Read more

On generalized-convex constrained multi-objective optimization

In this paper, we consider multi-objective optimization problems involving not necessarily convex constraints and componentwise generalized-convex (e.g., semi-strictly quasi-convex, quasi-convex, or explicitly quasi-convex) vector-valued objective functions that are acting between a real linear topological pre-image space and a finite dimensional image space. For these multi-objective optimization problems, we show that the set of (strictly, weakly) … Read more

Automatic Differentiation of the Open CASCADE Technology CAD System and its coupling with an Adjoint CFD Solver

Automatic Differentiation (AD) is applied to the open-source CAD system Open CASCADE Technology using the AD software tool ADOL-C (Automatic Differentiation by OverLoading in C++). The differentiated CAD system is coupled with a discrete adjoint CFD solver, thus providing the first example of a complete differentiated design chain built from generic, multi-purpose tools. The design … Read more

Linear Convergence of Proximal Incremental Aggregated Gradient Methods under Quadratic Growth Condition

Under the strongly convex assumption, several recent works studied the global linear convergence rate of the proximal incremental aggregated gradient (PIAG) method for minimizing the sum of a large number of smooth component functions and a non-smooth convex function. In this paper, under the quadratic growth condition{a strictly weaker condition than the strongly convex assumption, … Read more

Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We show that … Read more

A randomized method for smooth convex minimization, motivated by probability maximization

We propose a randomized gradient method – or a randomized cutting-plane method from a dual viewpoint. From the primal viewpoint, our method bears a resemblance to the stochastic approximation family. But in contrast to stochastic approximation, the present method builds a model problem. CitationKecskemet College, Pallasz Athene University. Izsaki ut 10, 6000 Kecskemet, Hungary; and … Read more

An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new … Read more

Direct Search Methods on Reductive Homogeneous Spaces

Direct search methods are mainly designed for use in problems with no equality constraints. However, there are many instances where the feasible set is of measure zero in the ambient space and no mesh point lies within it. There are methods for working with feasible sets that are (Riemannian) manifolds, but not all manifolds are … Read more

A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations $\mathcal{Q} {\bf x} = {\bf b}$, where ${\bf x} = (x_1,\ldots,x_s)$ is partitioned into $s$ blocks, with $s \geq 2$, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an … Read more