Analysis of direct searches for non-Lipschitzian functions

It is known that the Clarke generalized directional derivative is nonnegative along the limit directions generated by directional direct-search methods at a limit point of certain subsequences of unsuccessful iterates, if the function being minimized is Lipschitz continuous near the limit point. In this paper we generalize this result for non-Lipschitzian functions using Rockafellar generalized … Read more

Optimizing radial basis functions by D.C. programming and its use in direct search for global derivative-free optimization

In this paper we address the global optimization of functions subject to bound and linear constraints without using derivatives of the objective function. We investigate the use of derivative-free models based on radial basis functions (RBFs) in the search step of direct-search methods of directional type. We also study the application of algorithms based on … Read more

Matrix-Free Interior Point Method

In this paper we present a redesign of a linear algebra kernel of an interior point method to avoid the explicit use of problem matrices. The only access to the original problem data needed are the matrix-vector multiplications with the Hessian and Jacobian matrices. Such a redesign requires the use of suitably preconditioned iterative methods … Read more

On approximate KKT condition and its extension to continuous variational inequalities

In this work we introduce a necessary natural sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality problem without constraint quali cations, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Garciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition … Read more

On the convergence of the projected gradient method for vector optimization

In 2004, Graña Drummond and Iusem proposed an extension of the projected gradient method for constrained vector optimization problems. In that method, an Armijo-like rule, implemented with a backtracking procedure, was used in order to determine the steplengths. The authors just showed stationarity of all cluster points and, for another version of the algorithm (with … Read more

A globally convergent modified conjugate-gradient line-search algorithm with inertia controlling

In this paper we have addressed the problem of unboundedness in the search direction when the Hessian is indefinite or near singular. A new algorithm has been proposed which naturally handles singular Hessian matrices, and is theoretically equivalent to the trust-region approach. This is accomplished by performing explicit matrix modifications adaptively that mimic the implicit … Read more

Two-Stage Quadratic Integer Programs with Stochastic Right-Hand Sides

We consider two-stage quadratic integer programs with stochastic right-hand sides, and present an equivalent reformulation using value functions. We fi rst derive some basic properties of value functions of quadratic integer programs. We then propose a two-phase solution approach. The first phase constructs the value functions of quadratic integer programs in both stages. The second phase … Read more

On the Stopping Criterion for Numerical Methods Used to Solve Linear Systems with Additive Gaussian Noise

We consider the inversion of a linear operator with centered Gaussian white noise by MAP estimation with a Gaussian prior distribution on the solution. The actual estimator is computed approximately by a numerical method. We propose a relation between the stationarity measure of this approximate solution to the mean square error of the exact solution. … Read more

Hager-Zhang Active Set Algorithm for Large-Scale Continuous Knapsack Problems

The structure of many real-world optimization problems includes minimization of a nonlinear (or quadratic) functional subject to bound and singly linear constraints (in the form of either equality or bilateral inequality) which are commonly called as continuous knapsack problems. Since there are efficient methods to solve large-scale bound constrained nonlinear programs, it is desirable to … Read more

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions

In this paper, we apply the quadratic penalization technique to derive strong Lagrangian duality property for an inequality constrained invex program. Our results extend and improve the corresponding results in the literature. CitationBazara, M. S. and Shetty, C. M., Nonlinear Programming Theory and Algorithms, John Wiley \& Sons, New York, 1979. Ben-Israel, A. and Mond, … Read more