On the Quadratic Shortest Path Problem

Finding the shortest path in a directed graph is one of the most important combinatorial optimization problems, having applications in a wide range of fields. In its basic version, however, the problem fails to represent situations in which the value of the objective function is determined not only by the choice of each single arc, … Read more

Lower bounding procedure for the Asymmetric Quadratic Traveling Salesman Problem

In this paper we consider the Asymmetric Quadratic Traveling Salesman Problem. Given a directed graph and a function that maps every pair of consecutive arcs to a cost, the problem consists in finding a cycle that visits every vertex exactly once and such that the sum of the costs is minimum. We propose an extended … Read more

ADMM for Convex Quadratic Programs: Linear Convergence and Infeasibility Detection

In this paper, we analyze the convergence of Alternating Direction Method of Multipliers (ADMM) on convex quadratic programs (QPs) with linear equality and bound constraints. The ADMM formulation alternates between an equality constrained QP and a projection on the bounds. Under the assumptions of: (i) positive definiteness of the Hessian of the objective projected on … Read more

Clustering-Based Preconditioning for Stochastic Programs

We present a clustering-based preconditioning strategy for KKT systems arising in stochastic programming within an interior-point framework. The key idea is to perform adaptive clustering of scenarios (inside-the-solver) based on their influence on the problem as opposed to cluster scenarios based on problem data alone, as is done in existing (outside-thesolver) approaches. We derive spectral … Read more

HIPAD – A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection

We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method … Read more

Globally Convergent Primal-Dual Active-Set Methods with Inexact Subproblem Solves

We propose primal-dual active-set (PDAS) methods for solving large-scale instances of an important class of convex quadratic optimization problems (QPs). The iterates of the algorithms are partitions of the index set of variables, where corresponding to each partition there exist unique primal-dual variables that can be obtained by solving a (reduced) linear system. Algorithms of … Read more

Lower Bounds for the Quadratic Minimum Spanning Tree Problem Based on Reduced Cost Computation

The Minimum Spanning Tree Problem (MSTP) is one of the most known combinatorial optimization problems. It concerns the determination of a minimum edge-cost subgraph spanning all the vertices of a given connected graph. The Quadratic Minimum Spanning Tree Problem (QMSTP) is a variant of the MST whose cost considers also the interaction between every pair … Read more

On fast trust region methods for quadratic models with linear constraints

Quadratic models Q_k(.) of the objective function F(.) are used by many successful iterative algorithms for minimization, where k is the iteration number. Given the vector of variables x_k, a new vector x_{k+1} may be calculated that satisfies Q_k(x_{k+1}) < Q_k(x_k), in the hope that it provides the reduction F(x_{k+1}) < F(x_k). Trust region methods ... Read more

On a new class of matrix support functionals with applications

A new class of matrix support functionals is presented which establish a connection between optimal value functions for quadratic optimization problems, the matrix-fractional function, the pseudo matrix-fractional function, and the nuclear norm. The support function is based on the graph of the product of a matrix with its transpose. Closed form expressions for the support … Read more

How the augmented Lagrangian algorithm can deal with an infeasible convex quadratic optimization problem

This paper analyses the behavior of the augmented Lagrangian algorithm when it deals with an infeasible convex quadratic optimization problem. It is shown that the algorithm finds a point that, on the one hand, satisfies the constraints shifted by the smallest possible shift that makes them feasible and, on the other hand, minimizes the objective … Read more