On Standard Quadratic Programs with Exact and Inexact Doubly Nonnegative Relaxations

The problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of … Read more

On convex hulls of epigraphs of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study sufficient conditions for a convex hull result that immediately implies that the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such … Read more

A Finitely Convergent Disjunctive Cutting Plane Algorithm for Bilinear Programming

In this paper we present and analyze a finitely-convergent disjunctive cutting plane algorithm to obtain an \(\epsilon\)-optimal solution or detect infeasibility of a general nonconvex continuous bilinear program. While the cutting planes are obtained in a manner similar to Saxena, Bonami, and Lee [Math. Prog. 130: 359–413, 2011] and Fampa and Lee [J. Global Optim. … Read more

Sequential Convexification of a Bilinear Set

We present a sequential convexification procedure to derive, in the limit, a set arbitrary close to the convex hull of $\epsilon$-feasible solutions to a general nonconvex continuous bilinear set. Recognizing that bilinear terms can be represented with a finite number nonlinear nonconvex constraints in the lifted matrix space, our procedure performs a sequential convexification with … Read more

On the convexification of constrained quadratic optimization problems with indicator variables

Motivated by modern regression applications, in this paper, we study the convexification of quadratic optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear objective, indicator variables, and combinatorial constraints. We prove that for a separable quadratic … Read more

Outer Approximation for Global Optimization of Mixed-Integer Quadratic Bilevel Problems

Bilevel optimization problems have received a lot of attention in the last years and decades. Besides numerous theoretical developments there also evolved novel solution algorithms for mixed-integer linear bilevel problems and the most recent algorithms use branch-and-cut techniques from mixed-integer programming that are especially tailored for the bilevel context. In this paper, we consider MIQP-QP … Read more

A New Preconditioning Approach for an Interior Point-Proximal Method of Multipliers for Linear and Convex Quadratic Programming

In this paper, we address the efficient numerical solution of linear and quadratic programming problems, often of large scale. With this aim, we devise an infeasible interior point method, blended with the proximal method of multipliers, which in turn results in a primal-dual regularized interior point method. Application of this method gives rise to a … Read more

On the tightness of SDP relaxations of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study conditions under which the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such sufficient conditions. Then using this framework, we show … Read more

Exploiting Aggregate Sparsity in Second Order Cone Relaxations for Quadratic Constrained Quadratic Programming Problems

Among many approaches to increase the computational efficiency of semidefinite programming (SDP) relaxation for quadratic constrained quadratic programming problems (QCQPs), exploiting the aggregate sparsity of the data matrices in the SDP by Fukuda et al. (2001) and second-order cone programming (SOCP) relaxation have been popular. In this paper, we exploit the aggregate sparsity of SOCP … Read more

An algorithm for optimization with disjoint linear constraints and its application for predicting rain

A specialized algorithm for quadratic optimization (QO, or, formerly, QP) with disjoint linear constraints is presented. In the considered class of problems, a subset of variables are subject to linear equality constraints, while variables in a different subset are constrained to remain in a convex set. The proposed algorithm exploits the structure by combining steps … Read more