A Personalized Switched Systems Approach for the Optimal Control of Ventricular Assist Devices based on Atrioventricular Plane Displacement

Objective: A promising treatment for congestive heart failure is the implementation of a left ventricular assist device (LVAD) that works as a mechanical pump. Modern LVADs work with adjustable constant rotor speed and provide therefore continuous blood flow; however, recently undertaken efforts try to mimic pulsatile blood flow by oscillating the pump speed. This work … Read more

A numerical study of transformed mixed-integer optimal control problems

Time transformation is a ubiquitous tool in theoretical sciences, especially in physics. It can also be used to transform switched optimal con trol problems into control problems with a fixed switching order and purely continuous decisions. This approach is known either as enhanced time transformation, time-scaling, or switching time optimization (STO) for mixed-integer optimal control. … Read more

Binary Optimal Control by Trust-Region Steepest Descent

We present a trust-region steepest descent method for dynamic optimal control problems with binary-valued integrable control functions. Our method interprets the control function as an indicator function of a measurable set and makes set-valued adjustments derived from the sublevel sets of a topological gradient function. By combining this type of update with a trust-region framework, … Read more

Inversion of Convection-Diffusion Equation with Discrete Sources

We present a convection-diffusion inverse problem that aims to identify an unknown number of sources and their locations. We model the sources using a binary function, and we show that the inverse problem can be formulated as a large-scale mixed-integer nonlinear optimization problem. We show empirically that current state-of-the-art mixed-integer solvers cannot solve this problem … Read more

Randomized Sketching Algorithms for Low Memory Dynamic Optimization

This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state of a physical system for a … Read more

On Mixed-Integer Optimal Control with Constrained Total Variation of the Integer Control

The combinatorial integral approximation (CIA) decomposition suggests to solve mixed-integer optimal control problems (MIOCPs) by solving one continuous nonlinear control problem and one mixed-integer linear program (MILP). Unrealistic frequent switching can be avoided by adding a constraint on the total variation to the MILP. Within this work, we present a fast heuristic way to solve … Read more

Experimental operation of a solar-driven climate system with thermal energy storages using mixed-integer nonlinear MPC

This work presents the results of experimental operation of a solar-driven climate system using mixed-integer nonlinear Model Predictive Control (MPC). The system is installed in a university building and consists of two solar thermal collector fields, an adsorption cooling machine with different operation modes, a stratified hot water storage with multiple inlets and outlets as … Read more

Nonlinear Optimization of District Heating Networks

We develop a complementarity-constrained nonlinear optimization model for the time-dependent control of district heating networks. The main physical aspects of water and heat flow in these networks are governed by nonlinear and hyperbolic 1d partial differential equations. In addition, a pooling-type mixing model is required at the nodes of the network to treat the mixing … Read more

Dynamic Optimization with Complementarity Constraints: Smoothing for Direct Shooting

We consider optimization of differential-algebraic equations (DAEs) with complementarity constraints (CCs) of algebraic state pairs. Formulating the CCs as smoothed nonlinear complementarity problem (NCP) functions leads to a smooth DAE, allowing for the solution in direct shooting. We provide sufficient conditions for well-posedness. Thus, we can prove that with the smoothing parameter going to zero, … Read more

Mixed-Integer Optimal Control under Minimum Dwell Time Constraints

Tailored mixed-integer optimal control policies for real-world applications usually have to avoid very short successive changes of the active integer control. Minimum dwell time constraints express this requirement and can be included into the combinatorial integral approximation decomposition, which solves mixed-integer optimal control problems by solving one continuous nonlinear program and one mixed-integer linear program. … Read more