A view of algorithms for optimization without derivatives

Let the least value of a function of many variables be required. If its gradient is available, then one can tell whether search directions are downhill, and first order conditions help to identify the solution. It seems in practice, however, that the vast majority of unconstrained calculations do not employ any derivatives. A view of … Read more

The Speed of Shor’s R-Algorithm

Shor’s r-algorithm is an iterative method for unconstrained optimization, designed for minimizing nonsmooth functions, for which its reported success has been considerable. Although some limited convergence results are known, nothing seems to be known about the algorithm’s rate of convergence, even in the smooth case. We study how the method behaves on convex quadratics, proving … Read more

A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization

A recursive trust-region method is introduced for the solution of bound-constrained nonlinear nonconvex optimization problems for which a hierarchy of descriptions exists. Typical cases are infinite-dimensional problems for which the levels of the hierarchy correspond to discretization levels, from coarse to fine. The new method uses the infinity norm to define the shape of the … Read more

On large scale unconstrained optimization problems and higher order methods

Third order methods will in most cases use fewer iterations than a second order method to reach the same accuracy. However, the number of arithmetic operations per iteration is higher for third order methods than a second order method. Newton’s method is the most commonly used second order method and Halley’s method is the most … Read more

New Adaptive Stepsize Selections in Gradient Methods

This paper deals with gradient methods for minimizing n-dimensional strictly convex quadratic functions. Two new adaptive stepsize selection rules are presented and some key properties are proved. Practical insights on the effectiveness of the proposed techniques are given by a numerical comparison with the Barzilai-Borwein (BB) method, the cyclic/adaptive BB methods and two recent monotone … Read more

On diagonally-relaxed orthogonal projection methods

We propose and study a block-iterative projections method for solving linear equations and/or inequalities. The method allows diagonal component-wise relaxation in conjunction with orthogonal projections onto the individual hyperplanes of the system, and is thus called diagonally-relaxed orthogonal projections (DROP). Diagonal relaxation has proven useful in accelerating the initial convergence of simultaneous and block-iterative projection … Read more

Using Simplex Gradients of Nonsmooth Functions in Direct Search Methods

It has been shown recently that the efficiency of direct search methods that use opportunistic polling in positive spanning directions can be improved significantly by reordering the poll directions according to descent indicators built from simplex gradients. The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of nonsmooth functions … Read more

Global Convergence of General Derivative-Free Trust-Region Algorithms to First and Second Order Critical Points

In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, … Read more

PROXIMAL THRESHOLDING ALGORITHM FOR MINIMIZATION OVER ORTHONORMAL BASES

The notion of soft thresholding plays a central role in problems from various areas of applied mathematics, in which the ideal solution is known to possess a sparse decomposition in some orthonormal basis. Using convex-analytical tools, we extend this notion to that of proximal thresholding and investigate its properties, providing in particular several characterizations of … Read more

Variational Problems in Quasi-Newton Methods

It has been known since the early 1970s that the Hessian matrices in quasi-Newton methods can be updated by variational means, in several different ways. The usual formulation of these variational problems uses a coordinate system, and the symmetry of the Hessian matrices are enforced as explicit constraints. As a result, the variational problems seem … Read more