Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems

A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K* cuts} derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all … Read more

A Review and Comparison of Solvers for Convex MINLP

In this paper, we present a review of deterministic software for solving convex MINLP problems as well as a comprehensive comparison of a large selection of commonly available solvers. As a test set, we have used all MINLP instances classified as convex in the problem library MINLPLib, resulting in a test set of 366 convex … Read more

A computational study of global optimization solvers on two trust region subproblems

One of the relevant research topics to which Chris Floudas contributed was quadratically constrained quadratic programming (QCQP). This paper considers one of the simplest hard cases of QCQP, the two trust region subproblem (TTRS). In this case, one needs to minimize a quadratic function constrained by the intersection of two ellipsoids. The Lagrangian dual of … Read more

A note on using performance and data profiles for training algorithms

It is shown how to use the performance and data profile benchmarking tools to improve algorithms’ performance. An illustration for the BFO derivative-free optimizer suggests that the obtained gains are potentially significant. Citation ACM Transactions on Mathematical Software, 45:2 (2019), Article 20. Article Download View A note on using performance and data profiles for training … Read more

BASBL: Branch-And-Sandwich BiLevel solver. II. Implementation and computational study with the BASBLib test set

We describe BASBL, our implementation of the deterministic global optimization algorithm Branch-and-Sandwich for nonconvex/nonlinear bilevel problems, within the open-source MINOTAUR framework. The solver incorporates the original Branch-and-Sandwich algorithm and modifications proposed in the first part of this work. We also introduce BASBLib, an extensive online library of bilevel benchmark problems collected from the literature and … Read more

On the effectiveness of primal and dual heuristics for the transportation problem

The transportation problem is one of the most popular problems in linear programming. Over the course of time a multitude of exact solution methods and heuristics have been proposed. Due to substantial progress of exact solvers since the mid of the last century, the interest in heuristics for the transportation problem over the last few … Read more

A simple preprocessing algorithm for semidefinite programming

We propose a very simple preprocessing algorithm for semidefinite programming. Our algorithm inspects the constraints of the problem, deletes redundant rows and columns in the constraints, and reduces the size of the variable matrix. It often detects infeasibility. Our algorithm does not rely on any optimization solver: the only subroutine it needs is Cholesky factorization, … Read more

Globally Optimized Finite Packings of Arbitrary Size Spheres in R^d

This work discusses the following general packing problem-class: given a finite collection of d-dimensional spheres with arbitrarily chosen radii, find the smallest sphere in R^d that contains the entire collection of these spheres in a non-overlapping arrangement. Generally speaking, analytical solution approaches cannot be expected to apply to this general problem-type, except for very small … Read more

A BFGS-SQP Method for Nonsmooth, Nonconvex, Constrained Optimization and its Evaluation using Relative Minimization Profiles

We propose an algorithm for solving nonsmooth, nonconvex, constrained optimization problems as well as a new set of visualization tools for comparing the performance of optimization algorithms. Our algorithm is a sequential quadratic optimization method that employs Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton Hessian approximations and an exact penalty function whose parameter is controlled using a steering strategy. … Read more

Perprof-py: a Python package for performance profile of mathematical optimization software

A very important part of research in Mathematical Optimization field is to benchmark optimization packages because it is one of the ways to compare solvers. During benchmarking, one usually obtains a large amount of information, like CPU time, number of functions evaluations, number of iterations and much more. This information, if presented as tables, can … Read more