A note on using performance and data profiles for training algorithms

It is shown how to use the performance and data profile benchmarking tools to improve algorithms’ performance. An illustration for the BFO derivative-free optimizer suggests that the obtained gains are potentially significant. Citation ACM Transactions on Mathematical Software, 45:2 (2019), Article 20. Article Download View A note on using performance and data profiles for training … Read more

BASBL: Branch-And-Sandwich BiLevel solver. II. Implementation and computational study with the BASBLib test set

We describe BASBL, our implementation of the deterministic global optimization algorithm Branch-and-Sandwich for nonconvex/nonlinear bilevel problems, within the open-source MINOTAUR framework. The solver incorporates the original Branch-and-Sandwich algorithm and modifications proposed in the first part of this work. We also introduce BASBLib, an extensive online library of bilevel benchmark problems collected from the literature and … Read more

On the effectiveness of primal and dual heuristics for the transportation problem

The transportation problem is one of the most popular problems in linear programming. Over the course of time a multitude of exact solution methods and heuristics have been proposed. Due to substantial progress of exact solvers since the mid of the last century, the interest in heuristics for the transportation problem over the last few … Read more

A simple preprocessing algorithm for semidefinite programming

We propose a very simple preprocessing algorithm for semidefinite programming. Our algorithm inspects the constraints of the problem, deletes redundant rows and columns in the constraints, and reduces the size of the variable matrix. It often detects infeasibility. Our algorithm does not rely on any optimization solver: the only subroutine it needs is Cholesky factorization, … Read more

Globally Optimized Finite Packings of Arbitrary Size Spheres in R^d

This work discusses the following general packing problem-class: given a finite collection of d-dimensional spheres with arbitrarily chosen radii, find the smallest sphere in R^d that contains the entire collection of these spheres in a non-overlapping arrangement. Generally speaking, analytical solution approaches cannot be expected to apply to this general problem-type, except for very small … Read more

A BFGS-SQP Method for Nonsmooth, Nonconvex, Constrained Optimization and its Evaluation using Relative Minimization Profiles

We propose an algorithm for solving nonsmooth, nonconvex, constrained optimization problems as well as a new set of visualization tools for comparing the performance of optimization algorithms. Our algorithm is a sequential quadratic optimization method that employs Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton Hessian approximations and an exact penalty function whose parameter is controlled using a steering strategy. … Read more

Perprof-py: a Python package for performance profile of mathematical optimization software

A very important part of research in Mathematical Optimization field is to benchmark optimization packages because it is one of the ways to compare solvers. During benchmarking, one usually obtains a large amount of information, like CPU time, number of functions evaluations, number of iterations and much more. This information, if presented as tables, can … Read more

What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO

Though empirical testing is broadly used to evaluate heuristics, there are shortcomings with how it is often applied in practice. In a systematic review of Max-Cut and Quadratic Unconstrained Binary Optimization (QUBO) heuristics papers, we found only 4% publish source code, only 14% compare heuristics with identical termination criteria, and most experiments are performed with … Read more

A Multi-Layer Line Search Method to Improve the Initialization of Optimization Algorithms

We introduce a novel metaheuristic methodology to improve the initialization of a given deterministic or stochastic optimization algorithm. Our objective is to improve the performance of the considered algorithm, called core optimization algorithm, by reducing its number of cost function evaluations, by increasing its success rate and by boosting the precision of its results. In … Read more

On the Performance of SQP Methods for Nonlinear Optimization

This paper concerns some practical issues associated with the formulation of sequential quadratic programming (SQP) methods for large-scale nonlinear optimization. SQP methods find an approximate solution of a sequence of quadratic programming (QP) subproblems in which a quadratic model of the objective function is minimized subject to the linearized constraints. Extensive numerical results are given … Read more