Packing Ovals In Optimized Regular Polygons

We present a model development framework and numerical solution approach to the general problem-class of packing convex objects into optimized convex containers. Specifically, here we discuss the problem of packing ovals (egg-shaped objects, defined here as generalized ellipses) into optimized regular polygons in R”. Our solution strategy is based on the use of embedded Lagrange … Read more

Pattern-based models and a cooperative parallel metaheuristic for high school timetabling problems

High school timetabling problems consist in building periodic timetables for class-teacher meetings considering compulsory and non-compulsory requisites. This family of problems has been widely studied since the 1950s, mostly via mixed-integer programming and metaheuristic techniques. However, the efficient obtention of optimal or near-optimal solutions is still a challenge for many problems of practical size. In … Read more

PyMOSO: Software for Multi-Objective Simulation Optimization with R-PERLE and R-MinRLE

We present the PyMOSO software package for (1) solving multi-objective simulation optimization (MOSO) problems on integer lattices, and (2) implementing and testing new simulation optimization (SO) algorithms. First, for solving MOSO problems on integer lattices, PyMOSO implements R-PERLE, a state-of-the-art algorithm for two objectives, and R-MinRLE, a competitive benchmark algorithm for three or more objectives. … Read more

Scalable Branching on Dual Decomposition of Stochastic Mixed-Integer Programming Problems

We present a scalable branching method for the dual decomposition of stochastic mixed-integer programming. Our new branching method is based on the branching method proposed by Caro e and Schultz that creates branching disjunctions on first-stage variables only. We propose improvements to the process for creating branching disjunctions, including 1) branching on the optimal solutions … Read more

Exploiting Low-Rank Structure in Semidefinite Programming by Approximate Operator Splitting

In contrast with many other convex optimization classes, state-of-the-art semidefinite programming solvers are yet unable to efficiently solve large scale instances. This work aims to reduce this scalability gap by proposing a novel proximal algorithm for solving general semidefinite programming problems. The proposed methodology, based on the primal-dual hybrid gradient method, allows the presence of … Read more

POLO: a POLicy-based Optimization library

We present POLO — a C++ library for large-scale parallel optimization research that emphasizes ease-of-use, flexibility and efficiency in algorithm design. It uses multiple inheritance and template programming to decompose algorithms into essential policies and facilitate code reuse. With its clear separation between algorithm and execution policies, it provides researchers with a simple and powerful … Read more

Parallelizable Algorithms for Optimization Problems with Orthogonality Constraints

To construct a parallel approach for solving optimization problems with orthogonality constraints is usually regarded as an extremely difficult mission, due to the low scalability of the orthonormalization procedure. However, such demand is particularly huge in some application areas such as materials computation. In this paper, we propose a proximal linearized augmented Lagrangian algorithm (PLAM) … Read more

Rapid prototyping of parallel primal heuristics for domain specific MIPs: Application to maritime inventory routing

Parallel Alternating Criteria Search (PACS) relies on the combination of computer parallelism and Large Neighborhood Searches to attempt to deliver high quality solutions to any generic Mixed-Integer Program (MIP) quickly. While general-purpose primal heuristics are widely used due to their universal application, they are usually outperformed by domain-specific heuristics when optimizing a particular problem class. … Read more

Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems

A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K* cuts} derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all … Read more

Minimizing convex quadratics with variable precision Krylov methods

Iterative algorithms for the solution of convex quadratic optimization problems are investigated, which exploit inaccurate matrix-vector products. Theoretical bounds on the performance of a Conjugate Gradients and a Full-Orthormalization methods are derived, the necessary quantities occurring in the theoretical bounds estimated and new practical algorithms derived. Numerical experiments suggest that the new methods have significant … Read more