Decentralized Algorithms for Distributed Integer Programming Problems with a Coupling Cardinality Constraint

We consider a multi-player optimization where each player has her own optimization problem and the individual problems are connected by a cardinality constraint on their shared resources. We give distributed algorithms that allow each player to solve their own optimization problem and still achieve a global optimization solution for problems that possess a concavity property. … Read more

The Supporting Hyperplane Optimization Toolkit

In this paper, an open source solver for mixed-integer nonlinear programming (MINLP) problems is presented. The Supporting Hyperplane Optimization Toolkit (SHOT) combines a dual strategy based on polyhedral outer approximations (POA) with primal heuristics. The outer approximation is achieved by expressing the nonlinear feasible set of the MINLP problem with linearizations obtained with the extended … Read more

Selection of variables in parallel space decomposition for the mesh adaptive direct search algorithm

The parallel space decomposition of the Mesh Adaptive Direct Search algorithm (PSDMADS proposed in 2008) is an asynchronous parallel method for constrained derivative-free optimization with large number of variables. It uses a simple generic strategy to decompose a problem into smaller dimension subproblems. The present work explores new strategies for selecting subset of variables defining … Read more

A Review and Comparison of Solvers for Convex MINLP

In this paper, we present a review of deterministic software for solving convex MINLP problems as well as a comprehensive comparison of a large selection of commonly available solvers. As a test set, we have used all MINLP instances classified as convex in the problem library MINLPLib, resulting in a test set of 366 convex … Read more

Sensitivity Analysis for Nonlinear Programming in CasADi

We present an extension of the CasADi numerical optimization framework that allows arbitrary order NLP sensitivities to be calculated automatically and efficiently. The approach, which can be used together with any NLP solver available in CasADi, is based on a sparse QR factorization and an implementation of a primal-dual active set method. The whole toolchain … Read more

A computational study of global optimization solvers on two trust region subproblems

One of the relevant research topics to which Chris Floudas contributed was quadratically constrained quadratic programming (QCQP). This paper considers one of the simplest hard cases of QCQP, the two trust region subproblem (TTRS). In this case, one needs to minimize a quadratic function constrained by the intersection of two ellipsoids. The Lagrangian dual of … Read more

Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization

We investigate how the numerical properties of the LP relaxations evolve throughout the solution procedure in a solver employing the branch-and-cut algorithm. The long-term goal of this work is to determine whether the effect on the numerical conditioning of the LP relaxations resulting from the branching and cutting operations can be effectively predicted and whether … Read more

A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization

We propose a communication- and computation-efficient distributed optimization algorithm using second-order information for solving ERM problems with a nonsmooth regularization term. Current second-order and quasi-Newton methods for this problem either do not work well in the distributed setting or work only for specific regularizers. Our algorithm uses successive quadratic approximations, and we describe how to … Read more

An algorithmic framework based on primitive directions and nonmonotone line searches for black box problems with integer variables

In this paper, we develop a new algorithmic framework that handles black box problems with integer variables. The strategy included in the framework makes use of specific search directions (so called primitive directions) and a suitably developed nonmonotone line search, thus guaranteeing a high level of freedom when exploring the integer lattice. We first describe … Read more

High-Level Interfaces for the Multiple Shooting Code for Optimal Control MUSCOD

The demand for model-based simulation and optimization solutions requires the availability of software frameworks that not only provide computational capabilities, but also help to ease the formulation and implementation of the respective optimal control problems. In this article, we present and discuss recent development efforts and applicable work flows using the example of MUSCOD, the … Read more