Stochastic Optimization Models of Insurance Mathematics

The paper overviews stochastic optimization models of insurance mathematics and methods for their solution from the point of view of stochastic programming and stochastic optimal control methodology, with vector optimality criteria. The evolution of an insurance company’s capital is considered in discrete time. The main random variables, which influence this evolution, are levels of payments, … Read more

Objective Selection for Cancer Treatment: An Inverse Optimization Approach

In radiation therapy treatment-plan optimization, selecting a set of clinical objectives that are tractable and parsimonious yet effective is a challenging task. In clinical practice, this is typically done by trial and error based on the treatment planner’s subjective assessment, which often makes the planning process inefficient and inconsistent. We develop the objective selection problem … Read more

Representation of the Pareto front for heterogeneous multi-objective optimization

Optimization problems with multiple objectives which are expensive, i.e. where function evaluations are time consuming, are difficult to solve. Finding at least one locally optimal solution is already a difficult task. In case only one of the objective functions is expensive while the others are cheap, for instance analytically given, this can be used in … Read more

On the intrinsic core of convex cones in real linear spaces

Convex cones play an important role in nonlinear analysis and optimization theory. In particular, specific normal cones and tangent cones are known to be convex cones, and it is a crucial fact that they are useful geometric objects for describing optimality conditions. As important applications (especially, in the fields of optimal control with PDE constraints, … Read more

Computational Enhancement in the Application of the Branch and Bound Method for Linear Integer Programs and Related Models

In this paper, a reformulation that was proposed for a knapsack problem has been extended to single and bi-objective linear integer programs. A further reformulation by adding an upper bound constraint for a knapsack problem is also proposed and extended to the bi-objective case. These reformulations significantly reduce the number of branch and bound iterations … Read more

Methods for multiobjective bilevel optimization

This paper is on multiobjective bilevel optimization, i.e. on bilevel optimization problems with multiple objectives on the lower or on the upper level, or even on both levels. We give an overview on the major optimality notions used in multiobjective optimization. We provide characterization results for the set of optimal solutions of multiobjective optimization problems … Read more

The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning

Optimization of conflicting functions is of paramount importance in decision making, and real world applications frequently involve data that is uncertain or unknown, resulting in multi-objective optimization (MOO) problems of stochastic type. We study the stochastic multi-gradient (SMG) method, seen as an extension of the classical stochastic gradient method for single-objective optimization. At each iteration … Read more

Quantifying the value of flexibility: demand response versus storage

Intermittent sources of energy represent a challenge for electrical networks, particularly regarding demand satisfaction at peak times. Energy management tools such as load shaving or storage systems can be used to mitigate abrupt variations in the network.The value of different mechanisms to move energy through time is determined by a multi-objective programming approach, that aims … Read more

Line-Prioritized Environmental Selection and Normalization Scheme for Many-Objective Optimization using Reference-Line-based Framework

The Pareto-dominance-basedmulti-objective evolutionary algorithms (MOEAs) have been successful in solving many test problems and other engineering optimization problems. However, their performance gets affected when solving more than 3-objective optimization problems due to lack of sufficient selection pressure. Many attempts have been made by the researchers toward improving the environmental selection of those MOEAs. One such … Read more

Solving Multiobjective Mixed Integer Convex Optimization Problems

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, … Read more