The proximal point method for locally Lipschitz functions in multiobjective optimization

This paper studies the constrained multiobjective optimization problem of finding Pareto critical points of vector-valued functions. The proximal point method considered by Bonnel et al. (SIAM J. Optim., 4 (2005), pp. 953-970) is extended to locally Lipschitz functions in the finite dimensional multiobjective setting. To this end, a new approach for convergence analysis of the … Read more

SCORE Allocations for Bi-objective Ranking and Selection

The bi-objective R&S problem is a special case of the multi-objective simulation optimization problem in which two conflicting objectives are known only through dependent Monte Carlo estimators, the decision space or number of systems is finite, and each system can be sampled to some extent. The solution to the bi-objective R&S problem is a set … Read more

Disjunctive Programming for Multiobjective Discrete Optimisation

In this paper, I view and present the multiobjective discrete optimisation problem as a particular case of disjunctive programming where one seeks to identify efficient solutions from within a disjunction formed by a set of systems. The proposed approach lends itself to a simple yet effective iterative algorithm that is able to yield the set … Read more

Bi-objective branch–and–cut algorithms: Applications to the single source capacitated facility location problem

Most real–world optimization problems are of a multi–objective nature, involving objectives which are conflicting and incomparable. Solving a multi–objective optimization problem requires a method which can generate the set of rational compromises between the objectives. In this paper, we propose two distinct bound set based branch–and–cut algorithms for bi–objective combinatorial optimization problems, based on implicitly … Read more

A new algorithm for solving planar multiobjective location problems involving the Manhattan norm

This paper is devoted to the study of unconstrained planar multiobjective location problems, where distances between points are defined by means of the Manhattan norm. By identifying all nonessential objectives, we develop an effective algorithm for generating the whole set of efficient solutions. We prove the correctness of this algorithm and present some computational results, … Read more

Relationships between constrained and unconstrained multi-objective optimization and application in location theory

This article deals with constrained multi-objective optimization problems. The main purpose of the article is to investigate relationships between constrained and unconstrained multi-objective optimization problems. Under suitable assumptions (e.g., generalized convexity assumptions) we derive a characterization of the set of (strictly, weakly) efficient solutions of a constrained multi-objective optimization problem using characterizations of the sets … Read more

A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a linear scalarization proximal point algorithm for solving arbitrary lower semicontinuous quasiconvex multiobjective minimization problems. Under some natural assumptions and using the condition that the proximal parameters are bounded we prove the convergence of the sequence generated by the algorithm and when the objective functions are continuous, we prove the … Read more

A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a linear scalarization proximal point algorithm for solving arbitrary lower semicontinuous quasiconvex multiobjective minimization problems. Under some natural assumptions and using the condition that the proximal parameters are bounded we prove the convergence of the sequence generated by the algorithm and when the objective functions are continuous, we prove the … Read more

Strong slopes of a vector-valued map and applications in the study of error bounds, weak sharp minima and calmness

Using Hiriart-Urruty’s signed distance function, we present new definitions of strong slopes for a vector-valued map recently introduced in [E.M. Bednarczuk, A.Y., Kruger, Error bounds for vector-valued functions on metric spaces. Vietnam J. Math. 40 (2012), no. 2-3, 165-180]. With the new presentation, we are able to show that these slopes enjoy most properties of … Read more

Variational Analysis and Applications to Group Dynamics

In this paper, we establish a new version of Ekeland’s variational principle in a new setting of cone pseudo-quasimetric spaces. In constrast to metric spaces, we do not require that each forward Cauchy sequence is forward convergent and that each forward convergent sequence has the unique forward limit. The motivation of this paper comes from … Read more