Bicriteria approaches for an optimal balance between resilience and cost-effectiveness of supply chains

In supply chain optimization multiple objectives are considered simultaneously, for example to increase resilience and reduce costs. In this paper we discuss the corresponding bicriteria problems to find a good balance between these two objectives. We give a general model for supply chain resilience that integrates strategic decisions with the operational level. This modular model … Read more

Precise control of approximation quality in multicriteria optimization

Although many algorithms for multicriteria optimization provide good approximations, a precise control of their quality is challenging. In this paper we provide algorithmic tools to obtain exact approximation quality values for given approximations and develop a new method for multicriteria optimization guided by this quality. We show that the well-established “-indicator measure is NP-hard to … Read more

Using first-order information in Direct Multisearch for multiobjective optimization

Derivatives are an important tool for single-objective optimization. In fact, it is commonly accepted that derivative-based methods present a better performance than derivative-free optimization approaches. In this work, we will show that the same does not apply to multiobjective derivative-based optimization, when the goal is to compute an approximation to the complete Pareto front of … Read more

Adaptable Energy Management System for Smart Buildings

This paper presents a novel adaptable energy management system for smart buildings. In this framework we model the energy consumption of a living unit, and its energy exchange with the surroundings. We explicitly consider the impact of the outside environment and design features such as building orientation, automatic shading, and double facade. We formulate this … Read more

Complexity Aspects of Fundamental Questions in Polynomial Optimization

In this thesis, we settle the computational complexity of some fundamental questions in polynomial optimization. These include the questions of (i) finding a local minimum, (ii) testing local minimality of a candidate point, and (iii) deciding attainment of the optimal value. Our results characterize the complexity of these three questions for all degrees of the … Read more

A new binary programming formulation and social choice property for Kemeny rank aggregation

Rank aggregation is widely used in group decision-making and many other applications where it is of interest to consolidate heterogeneous ordered lists. Oftentimes, these rankings may involve a large number of alternatives, contain ties, and/or be incomplete, all of which complicate the use of robust aggregation methods. In particular, these characteristics have limited the applicability … Read more

Globally convergent Newton-type methods for multiobjective optimization

We propose two Newton-type methods for solving (possibly) nonconvex unconstrained multiobjective optimization problems. The first is directly inspired by the Newton method designed to solve convex problems, whereas  the second uses  second-order information of the objective functions with ingredients of the steepest descent method.  One of the key points of our approaches  is to impose … Read more

Accuracy and fairness trade-offs in machine learning: A stochastic multi-objective approach

In the application of machine learning to real life decision-making systems, e.g., credit scoring and criminal justice, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness. The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction … Read more

A conjugate directions-type procedure for quadratic multiobjective optimization

We propose an extension of the real-valued conjugate directions method for unconstrained quadratic multiobjective problems. As in the single-valued counterpart, the procedure requires a set of directions that are simultaneously conjugate with respect to the positive definite matrices of all quadratic objective components. Likewise, the multicriteria version computes the steplength by means of the unconstrained … Read more

An Adaptive Patch Approximation Algorithm for Bicriteria Convex Mixed Integer problems

Pareto frontiers of bicriteria continuous convex problems can be efficiently computed and optimal theoretical performance bounds have been established. In the case of bicriteria mixed-integer problems, the approximation of the Pareto frontier becomes, however, significantly harder. In this paper, we propose a new algorithm for approximating the Pareto frontier of bicriteria mixed-integer programs with convex … Read more