A Steepest Descent Method for Set Optimization Problems with Set-Valued Mappings of Finite Cardinality

In this paper, we study a first-order solution method for a particular class of set optimization problems where the solution concept is given by the set approach. We consider the case in which the set-valued objective mapping is identified by a finite number of continuously differentiable selections. The corresponding set optimization problem is then equivalent … Read more

Solving Multiplicative Programs by Binary-encoding the Multiplication Operation

Multiplicative programs in the form of maximization and/or minimization have numerous applications in conservation planning, game theory, and multi-objective optimization settings. In practice, multiplicative programs are challenging to solve because of their multiplicative objective function (a product of continuous or integer variables). These challenges are twofold: 1. As the number of factors in the objective … Read more

Twenty years of continuous multiobjective optimization in the twenty-first century

The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some … Read more

Branch-and-bound and objective branching with three objectives

The recent success of bi-objective Branch-and-Bound (B&B) algorithms heavily relies on the efficient computation of upper and lower bound sets. Besides the classical dominance test, bound sets are used to improve the computational time by imposing inequalities derived from (partial) dominance in the objective space. This process is called objective branching since it is mostly … Read more

An Exact Projection-Based Algorithm for Bilevel Mixed-Integer Problems with Nonlinearities

We propose an exact global solution method for bilevel mixed-integer optimization problems with lower-level integer variables and including nonlinear terms such as, \eg, products of upper-level and lower-level variables. Problems of this type are extremely challenging as a single-level reformulation suitable for off-the-shelf solvers is not available in general. In order to solve these problems … Read more

A dynamic programming approach to segmented isotonic regression

This paper proposes a polynomial-time algorithm to construct the monotone stepwise curve that minimizes the sum of squared errors with respect to a given cloud of data points. The fitted curve is also constrained on the maximum number of steps it can be composed of and on the minimum step length. Our algorithm relies on … Read more

The Moment-SOS hierarchy and the Christoffel-Darboux kernel

We consider the global minimization of a polynomial on a compact set B. We show that each step of the Moment-SOS hierarchy has a nice and simple interpretation that complements the usual one. Namely, it computes coefficients of a polynomial in an orthonormal basis of $L^2(B,\mu)$ where $\mu$ is an arbitrary reference measure whose support … Read more

Cost-Sharing Mechanism Design for Ride-Sharing

In this paper, we focus on the cost-sharing problem for ride-sharing that determines how to allocate the total ride cost between the driver and the passengers. We identify the properties that a desirable cost-sharing mechanism should have and develop a general framework which can be used to create specific cost-sharing mechanisms. We propose specific mechanisms … Read more

The Price of Anarchy in Series-Parallel Network Congestion Games

We study the inefficiency of pure Nash equilibria in symmetric network congestion games defined over series-parallel networks with affine edge delays. For arbitrary networks, Correa (2019) proved a tight upper bound of 5/2 on the PoA. On the other hand, for extension-parallel networks, a subclass of series-parallel networks, Fotakis (2010) proved that the PoA is … Read more

An equivalent mathematical program for games with random constraints

This paper shows that there exists a Nash equilibrium of an n-player chance-constrained game for elliptically symmetric distributions. For a certain class of payoff functions, we suitably construct an equivalent mathematical program whose global maximizer is a Nash equilibrium. ArticleDownload View PDF