The Impact of Collusion on the Price of Anarchy in Nonatomic and Discrete Network Games

Hayrapetyan, Tardos and Wexler recently introduced a framework to study the impact of collusion in congestion games on the quality of Nash equilibria. We adopt their framework to network games and focus on the well established price of anarchy as a measure of this impact. We first investigate nonatomic network games with coalitions. For this … Read more

Sensitivity analysis in linear semi-infinite programming via partitions

This paper provides sufficient conditions for the optimal value function of a given linear semi-infinite programming problem to depend linearly on the size of the perturbations, when these perturbations are directional, involve either the cost coefficients or the right-hand-side function or both, and they are sufficiently small. Two kinds of partitions are considered. The first … Read more

CONVERGENCE OF A CLASS OF SEMI-IMPLICIT TIME-STEPPING SCHEMES FOR NONSMOOTH RIGID MULTIBODY DYNAMICS

In this work we present a framework for the convergence analysis in a measure differential inclusion sense of a class of time-stepping schemes for multibody dynamics with contacts, joints, and friction. This class of methods solves one linear complementarity problem per step and contains the semi-implicit Euler method, as well as trapezoidallike methods for which … Read more

A new adaptive algorithm for linear multiobjective programming problems

In this paper, we present a new adaptive algorithm for defining the solution set of a multiobjective linear programming problem, where the decision variables are upper and lower bounded, using the direct support method. The principle particularitie of this method is the fact that it handles the bounds of variables such are they are initially … Read more

Decentralized Decision-making and Protocol Design for Recycled Material Flows

Reverse logistics networks often consist of several tiers with independent members competing at each tier. This paper develops a methodology to examine the individual entity behavior in reverse production systems where every entity acts to maximize its own benefits. We consider two tiers in the network, collectors and processors. The collectors determine individual flow functions … Read more

An Adaptive Primal-Dual Warm-Start Technique for Quadratic Multiobjective Optimization

We present a new primal-dual algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Results of this algorithm when applied on a three-criteria real-world power plant optimization problem are reported, thereby illustrating the feasibility of … Read more

A Q-Learning Algorithm with Continuous State Space

We study in this paper a Markov Decision Problem (MDP) with continuous state space and discrete decision variables. We propose an extension of the Q-learning algorithm introduced to solve this problem by Watkins in 1989 for completely discrete MDPs. Our algorithm relies on stochastic approximation and functional estimation, and uses kernels to locally update the … Read more

Efficient Evaluation of Polynomials and Their Partial Derivatives in Homotopy Continuation Methods

The aim of this paper is to study how efficiently we evaluate a system of multivariate polynomials and their partial derivatives in homotopy continuation methods. Our major tool is an extension of the Hornor scheme, which is popular in evaluating a univariate polynomial, to a multivariate polynomial. But the extension is not unique, and there … Read more

Fast computation of the leastcore and prenucleolus of cooperative games

The computation of leastcore and prenucleolus is an efficient way of allocating a common resource among N players. It has, however, the drawback being a linear programming problem with 2^N-2 constraints. In this paper we show how, in the case of convex production games, generate constraints by solving small size linear programming problems, with both … Read more

A Path to the Arrow-Debreu Competitive Market Equilibrium

We present polynomial-time interior-point algorithms for solving the Fisher and Arrow-Debreu competitive market equilibrium problems with linear utilities and $n$ players. Both of them have the arithmetic operation complexity bound of $O(n^4\log(1/\epsilon))$ for computing an $\epsilon$-equilibrium solution. If the problem data are rational numbers and their bit-length is $L$, then the bound to generate an … Read more