Probabilistic guarantees in Robust Optimization

We develop a general methodology to derive probabilistic guarantees for solutions of robust optimization problems. Our analysis applies broadly to any convex compact uncertainty set and to any constraint affected by uncertainty in a concave manner, under minimal assumptions on the underlying stochastic process. Namely, we assume that the coordinates of the noise vector are … Read more

Robust Optimization with Decision-Dependent Information Discovery

Robust optimization (RO) is a popular paradigm for modeling and solving two- and multi-stage decision-making problems affected by uncertainty. In many real-world applications, such as R&D project selection, production planning, or preference elicitation for product or policy recommendations, the time of information discovery is decision-dependent and the uncertain parameters only become observable after an often costly … Read more

Robust Optimal Aiming Strategies in Concentrated Solar Tower Power Plants

A concentrated solar tower power plant consists of a receiver mounted atop of a central tower and a field of movable mirrors called heliostats. The heliostats concentrate solar radiation onto the receiver where a fluid is heated to produce electricity in a conventional thermodynamic cycle. Aiming strategies are used to assign each heliostat to an … Read more

Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning

Many decision problems in science, engineering and economics are affected by uncertain parameters whose distribution is only indirectly observable through samples. The goal of data-driven decision-making is to learn a decision from finitely many training samples that will perform well on unseen test samples. This learning task is difficult even if all training and test … Read more

Distributionally Robust Optimization: A Review

The concepts of risk-aversion, chance-constrained optimization, and robust optimization have developed significantly over the last decade. Statistical learning community has also witnessed a rapid theoretical and applied growth by relying on these concepts. A modeling framework, called distributionally robust optimization (DRO), has recently received significant attention in both the operations research and statistical learning communities. … Read more

Near-optimal Robust Bilevel Optimization

Bilevel optimization studies problems where the optimal response to a second mathematical optimization problem is integrated in the constraints. Such structure arises in a variety of decision-making problems in areas such as market equilibria, policy design or product pricing. We introduce near-optimal robustness for bilevel problems, protecting the upper-level decision-maker from bounded rationality at the … Read more

A Bilevel Approach for Identifying the Worst Contingencies for Nonconvex Alternating Current Power Systems

We address the bilevel optimization problem of identifying the most critical attacks to an alternating current (AC) power flow network. The upper-level binary maximization problem consists in choosing an attack that is treated as a parameter in the lower-level defender minimization problem. Instances of the lower-level global minimization problem by themselves are NP-hard due to … Read more

Adjustable Robust Optimization Reformulations of Two-Stage Worst-case Regret Minimization Problems

This paper explores the idea that two-stage worst-case regret minimization problems with either objective or right-hand side uncertainty can be reformulated as two-stage robust optimization problems and can therefore benefit from the solution schemes and theoretical knowledge that have been developed in the last decade for this class of problems. In particular, we identify conditions … Read more

Decomposition-based approaches for a class of two-stage robust binary optimization problems

In this paper, we study a class of two-stage robust binary optimization problems with objective uncertainty where recourse decisions are restricted to be mixed-binary. For these problems, we present a deterministic equivalent formulation through the convexification of the recourse feasible region. We then explore this formulation under the lens of a relaxation, showing that the … Read more

Distributionally robust chance constrained geometric optimization

This paper discusses distributionally robust geometric programs with individual and joint chance constraints. Seven groups of uncertainty sets are considered: uncertainty sets with first two order moments information, uncertainty sets constrained by the Kullback-Leibler divergence distance with a normal reference distribution or a discrete reference distribution, uncertainty sets with known first moments or known first … Read more