A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides

We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which … Read more

Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls

Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dimensions. Specifically, … Read more

On deterministic reformulations of distributionally robust joint chance constrained optimization problems

A joint chance constrained optimization problem involves multiple uncertain constraints, i.e., constraints with stochastic parameters, that are jointly required to be satisfied with probability exceeding a prespecified threshold. In a distributionally robust joint chance constrained optimization problem (DRCCP), the joint chance constraint is required to hold for all probability distributions of the stochastic parameters from … Read more

Quadratic Two-Stage Stochastic Optimization with Coherent Measures of Risk

A new scheme to cope with two-stage stochastic optimization problems uses a risk measure as the objective function of the recourse action, where the risk measure is defined as the worst-case expected values over a set of constrained distributions. This paper develops an approach to deal with the case where both the first and second … Read more

Ambiguous Risk Constraints with Moment and Unimodality Information

Optimization problems face random constraint violations when uncertainty arises in constraint parameters. Effective ways of controlling such violations include risk constraints, e.g., chance constraints and conditional Value-at-Risk (CVaR) constraints. This paper studies these two types of risk constraints when the probability distribution of the uncertain parameters is ambiguous. In particular, we assume that the distributional … Read more

Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization

Worst-case risk measures refer to the calculation of the largest value for risk measures when only partial information of the underlying distribution is available. For the popular risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), it is now known that their worst-case counterparts can be evaluated in closed form when only the first … Read more

Stochastic and robust optimal operation of energy-efficient building with combined heat and power systems

Energy efficiency and renewable energy become more attractive in smart grid. In order to efficiently reduce global energy usage in building energy systems and to improve local environmental sustainability, it is essential to optimize the operation and the performance of combined heat and power (CHP) systems. In addition, intermittent renewable energy and imprecisely predicted customer … Read more

Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets

We consider a distributionally robust optimization problem where the ambiguity set of probability distributions is characterized by a tractable conic representable support set and expectation constraints. Specifically, we propose and motivate a new class of infinitely constrained ambiguity sets in which the number of expectation constraints could potentially be infinite. We show how the infinitely … Read more

Designing Response Supply Chain Against Bioattacks

Bioattacks, i.e., the intentional release of pathogens or biotoxins against humans to cause serious illness and death, pose a significant threat to public health and safety due to the availability of pathogens worldwide, scale of impact, and short treatment time window. In this paper, we focus on the problem of prepositioning inventory of medical countermeasures … Read more

Improved Handling of Uncertainty and Robustness in Set Covering Problems

This paper studies the emergency service facility location problem in an uncertain environment. The main focus is the integration of uncertainty regarding the covered area due to uncertain traveling times. Previous approaches only consider either probabilistic or fuzzy optimization to cope with uncertainty. However, in many real-world problems the required statistical parameters are not precisely … Read more