A Composite Risk Measure Framework for Decision Making under Uncertainty

In this paper, we present a unified framework for decision making under uncertainty. Our framework is based on the composite of two risk measures, where the inner risk measure accounts for the risk of decision given the exact distribution of uncertain model parameters, and the outer risk measure quantifies the risk that occurs when estimating … Read more

On the Adaptivity Gap in Two-stage Robust Linear Optimization under Uncertain Constraints

In this paper, we study the performance of static solutions in two-stage adjustable robust packing linear optimization problem with uncertain constraint coefficients. Such problems arise in many important applications such as revenue management and resource allocation problems where demand requests have uncertain resource requirements. The goal is to find a two-stage solution that maximizes the … Read more

Robust Binary Optimization using a Safe Tractable Approximation

We present a robust optimization approach to 0-1 linear programming with uncertain objective coefficients based on a safe tractable approximation of chance constraints, when only the first two moments and the support of the random parameters is known. We obtain nonlinear problems with only one additional (continuous) variable, for which we discuss solution techniques. The … Read more

Min-max-min robustness: a new approach to combinatorial optimization under uncertainty based on multiple solutions

In the classical min-max approach to robust combinatorial optimization, a single feasible solution is computed that optimizes the worst case over a given set of considered scenarios. As is well known, this approach is very conservative, leading to solutions that in the average case are far from being optimal. In this paper, we present a … Read more

The Value of Flexibility in Robust Location-Transportation Problems

This article studies a multi-period capacitated fixed-charge location-transportation problem in which, while the location and capacity of each facility need to be determined immediately, the determination of final production and distribution of products can be delayed until actual orders are received in each period. In contexts where little is known about future demand, robust optimization, … Read more

Multistage Robust Mixed Integer Optimization with Adaptive Partitions

We present a new partition-and-bound method for multistage adaptive mixed integer optimization (AMIO) problems that extends previous work on finite adaptability. The approach analyzes the optimal solution to a static (non-adaptive) version of an AMIO problem to gain insight into which regions of the uncertainty set are restricting the objective function value. We use this … Read more

Robust constrained shortest path problems under budgeted uncertainty

We study the robust constrained shortest path problem under resource uncertainty. After proving that the problem is \NPhard in the strong sense for arbitrary uncertainty sets, we focus on budgeted uncertainty sets introduced by Bertsimas and Sim (2003) and their extension to variable uncertainty by Poss (2013). We apply classical techniques to show that the … Read more

New Discoveries of Domination between Traffic Matrices

A traffic matrix $D_1$ dominates a traffic matrix $D_2$ if any capacity reservation supporting $D_1$ supports $D_2$ as well. We prove that $D_3$ dominates $D_3+ \lambda(D_2-D_1)$ for any $\lambda\geq 0$ if $D_1$ dominates $D_2$. By the property , it is pointed out that the domains supported by different traffic matrices are isomorphic on the extended … Read more

Efficient approaches for the robust network loading problem

We consider the Robust Network Loading problem with splittable flows and demands that belong to the budgeted uncertainty set. We compare the optimal solution cost and computational cost of the problem when using static routing, volume routing, affine routing, and dynamic routing. For the first three routing types, we compare the compact formulation with a … Read more