Decision Making Based on a Nonparametric Shape-Preserving Perturbation of a Reference Utility Function

This paper develops a robust optimization based decision-making framework using a nonparametric perturbation of a reference utility function. The perturbation preserves the risk-aversion property but solves the problem of ambiguity and inconsistency in eliciting the reference utility function. We study the topology of the perturbation, and show that in the decision-making framework the price of … Read more

Derivative-free Robust Optimization for Circuit Design

In this paper, we introduce a framework for derivative-free robust optimization based on the use of an efficient derivative-free optimization routine for mixed integer nonlinear problems. The proposed framework is employed to find a robust optimal design of a particular integrated circuit (namely a DC-DC converter commonly used in portable electronic devices). The proposed robust … Read more

Robust Data-Driven Dynamic Programming

In stochastic optimal control the distribution of the exogenous noise is typically unknown and must be inferred from limited data before dynamic programming (DP)-based solution schemes can be applied. If the conditional expectations in the DP recursions are estimated via kernel regression, however, the historical sample paths enter the solution procedure directly as they determine … Read more

Conic Geometric Programming

We introduce and study conic geometric programs (CGPs), which are convex optimization problems that unify geometric programs (GPs) and conic optimization problems such as linear programs (LPs) and semidefinite programs (SDPs). A CGP consists of a linear objective function that is to be minimized subject to affine constraints, convex conic constraints, and upper bound constraints … Read more

Trust-Region Problems with Linear Inequality Constraints: Exact SDP Relaxation, Global Optimality and Robust Optimization

The trust-region problem, which minimizes a nonconvex quadratic function over a ball, is a key subproblem in trust-region methods for solving nonlinear optimization problems. It enjoys many attractive properties such as an exact semi-definite linear programming relaxation (SDP-relaxation) and strong duality. Unfortunately, such properties do not, in general, hold for an extended trust-region problem having … Read more

Ambiguous Probabilistic Programs

Probabilistic programs are widely used decision models. When implemented in practice, however, there often exists distributional ambiguity in these models. In this paper, we model the ambiguity using the likelihood ratio (LR) and use LR to construct various ambiguity sets. We consider ambiguous probabilistic programs which optimize under the worst case. Ambiguous probabilistic programs can … Read more

A Convex Optimization Approach for Computing Correlated Choice Probabilities with Many Alternatives

A popular discrete choice model that incorporates correlation information is the Multinomial Probit (MNP) model where the random utilities of the alternatives are chosen from a multivariate normal distribution. Computing the choice probabilities is challenging in the MNP model when the number of alternatives is large and simulation is used to approximate the choice probabilities. … Read more

Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization

In recent years, decision rules have been established as the preferred solution method for addressing computationally demanding, multistage adaptive optimization problems. Despite their success, existing decision rules (a) are typically constrained by their a priori design and (b) do not incorporate in their modeling adaptive binary decisions. To address these problems, we first derive the … Read more

Robust Critical Node Selection by Benders Decomposition

The critical node selection problem (CNP) has important applications in telecommunication, supply chain design, and disease propagation prevention. In practice, the weights on the connections are either uncertain or hard to estimate so recently robust optimization approaches have been considered for CNP. In this article, we address very general uncertainty sets, only requiring a linear … Read more

Flexible Solutions to Maritime Inventory Routing Problems with Delivery Time Windows

This paper studies a Maritime Inventory Routing Problem with Time Windows (MIRPTW) for deliveries with uncertain disruptions. We consider disruptions that increase travel times between ports and ultimately affect the deliveries in one or more time windows. The objective is to find flexible solutions that can withstand unplanned disruptions. We propose a Lagrangian heuristic algorithm … Read more