Algebraic-based primal interior-point algorithms for stochastic infinity norm optimization

We study the two-stage stochastic infinity norm optimization problem with recourse. First, we study and analyze the algebraic structure of the infinity norm cone, and use its algebra to compute the derivatives of the barrier recourse functions. Then, we show that the barrier recourse functions and the composite barrier functions for this optimization problem are … Read more

Stochastic Dual Dynamic Programming for Optimal Power Flow Problems under Uncertainty

We propose the first computationally tractable framework to solve multi-stage stochastic optimal power flow (OPF) problems in alternating current (AC) power systems. To this end, we use recent results on dual convex semi-definite programming (SDP) relaxations of OPF problems in order to adapt the stochastic dual dynamic programming (SDDP) algorithm for problems with a Markovian … Read more

Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems

We consider mixed-integer linear quantile minimization problems that yield large-scale problems that are very hard to solve for real-world instances. We motivate the study of this problem class by two important real-world problems: a maintenance planning problem for electricity networks and a quantile-based variant of the classic portfolio optimization problem. For these problems, we develop … Read more

Convex Chance-Constrained Programs with Wasserstein Ambiguity

Chance constraints yield non-convex feasible regions in general. In particular, when the uncertain parameters are modeled by a Wasserstein ball, [Xie19] and [CKW18] showed that the distributionally robust (pessimistic) chance constraint admits a mixed-integer conic representation. This paper identifies sufficient conditions that lead to convex feasible regions of chance constraints with Wasserstein ambiguity. First, when … Read more

Mirror-prox sliding methods for solving a class of monotone variational inequalities

In this paper we propose new algorithms for solving a class of structured monotone variational inequality (VI) problems over compact feasible sets. By identifying the gradient components existing in the operator of VI, we show that it is possible to skip computations of the gradients from time to time, while still maintaining the optimal iteration … Read more

Distributionally Favorable Optimization: A Framework for Data-driven Decision-making with Endogenous Outliers

A typical data-driven stochastic program aims to seek the best decision that minimizes the sum of a deterministic cost function and an expected recourse function under a given distribution. Recently, much success has been witnessed in the development of Distributionally Robust Optimization (DRO), which considers the worst-case expected recourse function under the least favorable probability … Read more

A Unifying Framework for the Capacitated Vehicle Routing Problem under Risk and Ambiguity

We propose a generic model for the capacitated vehicle routing problem (CVRP) under demand uncertainty. By combining risk measures, satisficing measures or disutility functions with complete or partial characterizations of the probability distribution governing the demands, our formulation bridges the popular but often independently studied paradigms of stochastic programming and distributionally robust optimization. We characterize … Read more

Statistical Inference of Contextual Stochastic Optimization with Endogenous Uncertainty

This paper considers contextual stochastic optimization with endogenous uncertainty, where random outcomes depend on both contextual information and decisions. We analyze the statistical properties of solutions from two prominent approaches: predict-then-optimize (PTO), which first predicts a model between outcomes, contexts, and decisions, and then optimizes the downstream objective; and estimate- then-optimize (ETO), which directly estimates … Read more

Robust CARA Optimization

We propose robust optimization models and their tractable approximations that cater for ambiguity-averse decision makers whose underlying risk preferences are consistent with constant absolute risk aversion (CARA). Specifically, we focus on maximizing the worst-case expected exponential utility where the underlying uncertainty is generated from a set of stochastically independent factors with ambiguous marginals. To obtain … Read more

Inexact bilevel stochastic gradient methods for constrained and unconstrained lower-level problems

Two-level stochastic optimization formulations have become instrumental in a number ofmachine learning contexts such as continual learning, neural architecture search, adversariallearning, and hyperparameter tuning. Practical stochastic bilevel optimization problemsbecome challenging in optimization or learning scenarios where the number of variables ishigh or there are constraints. In this paper, we introduce a bilevel stochastic gradient method … Read more