On Generating Lagrangian Cuts for Two-stage Stochastic Integer Programs

We investigate new methods for generating Lagrangian cuts to solve two-stage stochastic integer programs. Lagrangian cuts can be added to a Benders reformulation, and are derived from solving single scenario integer programming subproblems identical to those used in the nonanticipative Lagrangian dual of a stochastic integer program. While Lagrangian cuts have the potential to significantly … Read more

An equivalent mathematical program for games with random constraints

This paper shows that there exists a Nash equilibrium of an n-player chance-constrained game for elliptically symmetric distributions. For a certain class of payoff functions, we suitably construct an equivalent mathematical program whose global maximizer is a Nash equilibrium. ArticleDownload View PDF

Stochastic Inventory Routing with Time-based Shipment Consolidation

Inspired by the retail industry, we introduce a fundamentally new approach towards stochastic inventory routing by replenishing retailers from a central warehouse using a time-based shipment consolidation policy. Such a time-based dispatching policy, where retailers facing stochastic demand are repetitively replenished at fixed times, is essential in practice. It allows for easy incorporation with dependent … Read more

Stochastic Decomposition Method for Two-Stage Distributionally Robust Optimization

In this paper, we present a sequential sampling-based algorithm for the two-stage distributionally robust linear programming (2-DRLP) models. The 2-DRLP models are defined over a general class of ambiguity sets with discrete or continuous probability distributions. The algorithm is a distributionally robust version of the well-known stochastic decomposition algorithm of Higle and Sen (Math. of … Read more

JuDGE.jl: a Julia package for optimizing capacity expansion

We present JuDGE.jl, an open-source Julia package for solving multistage stochastic capacity expansion problems using Dantzig-Wolfe decomposition. Models for JuDGE.jl are built using JuMP, the algebraic modelling language in Julia, and solved by repeatedly applying mixed-integer programming. We illustrate JuDGE.jl by formulating and solving a toy knapsack problem, and demonstrate the performance of JuDGE.jl on … Read more

A Parallel Hub-and-Spoke System for Large-Scale Scenario-Based Optimization Under Uncertainty

Efficient solution of stochastic programming problems generally requires the use of parallel computing resources. Here, we describe the open source package mpi-sppy, in which efficient and scalable parallelization is a central feature. We describe the overall architecture and provide computational examples and results showing scalability to the largest instances that we know of for the … Read more

A Novel Solution Methodology for Wasserstein-based Data-Driven Distributionally Robust Problems

Distributionally robust optimization (DRO) is a mathematical framework to incorporate ambiguity over the actual data-generating probability distribution. Data-driven DRO problems based on the Wasserstein distance are of particular interest for their sound mathematical properties. For right-hand-sided uncertainty, however, existing methods rely on dual vertex enumeration rendering the problem intractable in practical applications. In this context, … Read more

On Distributionally Robust Multistage Convex Optimization: New Algorithms and Complexity Analysis

This paper presents a novel algorithmic study and complexity analysis of distributionally robust multistage convex optimization (DR-MCO). We propose a new class of algorithms for solving DR-MCO, namely a sequential dual dynamic programming (Seq-DDP) algorithm and its nonsequential version (NDDP). The new algorithms generalize and strengthen existing DDP-type algorithms by introducing the technique of regularization … Read more

A General Framework for Optimal Data-Driven Optimization

We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision … Read more

Risk-Averse Multistage Stochastic Programs with Expected Conditional Risk Measures

We study decomposition algorithms for risk-averse multistage stochastic programs with expected conditional risk measures (ECRMs). ECRMs are attractive because they are time-consistent, which means that a plan made today will not be changed in the future if the problem is re-solved given a realization of the random variables. We show that solving risk-averse problems based … Read more