Dual bounds for periodical stochastic programs

In this paper we discuss construction of the dual of a periodical formulation of infinite horizon linear stochastic programs with a discount factor. The dual problem is used for computing a deterministic upper bound for the optimal value of the considered multistage stochastic program. Numerical experiments demonstrate behavior of that upper bound especially when the … Read more

Constant Depth Decision Rules for multistage optimization under uncertainty

In this paper, we introduce a new class of decision rules, referred to as Constant Depth Decision Rules (CDDRs), for multistage optimization under linear constraints with uncertainty-affected right-hand sides. We consider two uncertainty classes: discrete uncertainties which can take at each stage at most a fixed number d of different values, and polytopic uncertainties which, … Read more

Computationally Efficient Approximations for Distributionally Robust Optimization

Distributionally robust optimization (DRO) is a modeling framework in decision making under uncertainty where the probability distribution of a random parameter is unknown while its partial information (e.g., statistical properties) is available. In this framework, the unknown probability distribution is assumed to lie in an ambiguity set consisting of all distributions that are compatible with … Read more

Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step

In this paper we propose and analyze inexact and stochastic versions of the CGALP algorithm developed in the authors’ previous paper, which we denote ICGALP, that allows for errors in the computation of several important quantities. In particular this allows one to compute some gradients, proximal terms, and/or linear minimization oracles in an inexact fashion … Read more

Optimizing Diesel Fuel Supply Chain Operations for Hurricane Relief

Hurricanes can cause severe property damage and casualties in coastal regions. Diesel fuel plays a crucial role in hurricane disaster relief. It is important to optimize fuel supply chain operations so that emergency demand for diesel can be mitigated in a timely manner. However, it can be challenging to estimate demand for fuel and make … Read more

Decomposition Algorithms for Some Deterministic and Two-Stage Stochastic Single-Leader Multi-Follower Games

We consider a certain class of hierarchical decision problems that can be viewed as single-leader multi-follower games, and be represented by a virtual market coordinator trying to set a price system for traded goods, according to some criterion that balances supply and demand. The objective function of the market coordinator involves the decisions of many … Read more

A Distributionally Robust Optimization Approach for Stochastic Elective Surgery Scheduling with Limited Intensive Care Unit Capacity

In this paper, we study the decision process of assigning elective surgery patients to available surgical blocks in multiple operating rooms (OR) under random surgery durations, random postoperative length-of-stay in the intensive care unit (ICU), and limited capacity of ICU. The probability distributions of random parameters are assumed to be ambiguous, and only the mean … Read more

K-Adaptability in stochastic optimization

We consider stochastic problems in which both the objective function and the feasible set are affected by uncertainty. We address these problems using a K-adaptability approach, in which K solutions for the underlying problem are computed before the uncertainty dissolves and afterwards the best of them can be chosen for the realised scenario. This paradigm … Read more

Epi-convergence of Sample Averages of a Random Lower Semi-continuous Functional Generated by a Markov Chain and Application to Stochastic Optimization

The purpose of this article is to establish epigraphical convergence of the sample averages of a random lower semi-continuous functional associated with a Harris recurrent Markov chain with stationary distribution $\pi$. Sample averages associated with an ergodic Markov chain with stationary probability distribution will epigraphically converge from $\pi$-almost all starting points. The property of Harris … Read more

A Framework for Generalized Benders’ Decomposition and Its Application to Multilevel Optimization

We describe an algorithmic framework generalizing the well-known framework originally introduced by Benders. We apply this framework to several classes of optimization problems that fall under the broad umbrella of multilevel/multistage mixed integer linear optimization problems. The development of the abstract framework and its application to this broad class of problems provides new insights and … Read more