Quantitative Stability of Two-stage Stochastic Linear Programs with Full Random Recourse

In this paper, we use the parametric programming technique and pseudo metrics to study the quantitative stability of the two-stage stochastic linear programming problem with full random recourse. Under the simultaneous perturbation of the cost vector, coefficient matrix and right-hand side vector, we first establish the locally Lipschitz continuity of the optimal value function and … Read more

Representation of distributionally robust chance-constraints

Given $X\subset R^n$, $\varepsilon \in (0,1)$, a parametrized family of probability distributions $(\mu_{a})_{a\in A}$ on $\Omega\subset R^p$, we consider the feasible set $X^*_\varepsilon\subset X$ associated with the {\em distributionally robust} chance-constraint \[X^*_\varepsilon\,=\,\{x\in X:\:{\rm Prob}_\mu[f(x,\omega)\,>\,0]> 1-\varepsilon,\,\forall\mu\in\mathscr{M}_a\},\] where $\mathscr{M}_a$ is the set of all possibles mixtures of distributions $\mu_a$, $a\in A$. For instance and typically, the family … Read more

Dynamic Risked Equilibrium

We revisit the correspondence of competitive partial equilibrium with a social optimum in markets where risk-averse agents solve multistage stochastic optimization problems formulated in scenario trees. The agents trade a commodity that is produced from an uncertain supply of resources which can be stored. The agents can also trade risk using Arrow-Debreu securities. In this … Read more

Exact converging bounds for Stochastic Dual Dynamic Programming via Fenchel duality

The Stochastic Dual Dynamic Programming (SDDP) algorithm has become one of the main tools to address convex multistage stochastic optimal control problem. Recently a large amount of work has been devoted to improve the convergence speed of the algorithm through cut-selection and regularization, or to extend the field of applications to non-linear, integer or risk-averse … Read more

An algorithm for solving infinite horizon Markov dynamic programmes

We consider a general class of infinite horizon dynamic programmes where state and control sets are convex and compact subsets of Euclidean spaces and (convex) costs are discounted geometrically. The aim of this work is to provide a convergence result for these problems under as few restrictions as possible. Under certain assumptions on the cost … Read more

Hadamard Directional Diff erentiability of the Optimal Value of a Linear Second-order Conic Programming Problem

In this paper, we consider perturbation properties of a linear second-order conic optimization problem and its Lagrange dual in which all parameters in the problem are perturbed. We prove the upper semi-continuity of solution mappings for the primal problem and the Lagrange dual problem. We demonstrate that the optimal value function can be expressed as … Read more

Two-stage Linear Decision Rules for Multi-stage Stochastic Programming

Multi-stage stochastic linear programs (MSLPs) are notoriously hard to solve in general. Linear decision rules (LDRs) yield an approximation of an MSLP by restricting the decisions at each stage to be an affine function of the observed uncertain parameters. Finding an optimal LDR is a static optimization problem that provides an upper bound on the … Read more

An Integrated Car-and-ride Sharing System for Mobilizing Heterogeneous Travelers with Application in Underserved Communities

The fast-growing carsharing and ride-hailing businesses are generating economic benefits and societal impacts in the modern society. However, both have limitation to cover demand from diverse populations, e.g., travelers in low-income, underserved communities. In this paper, we consider two types of travelers: Type~1 who rent shared cars and Type~2 who need shared rides. We propose … Read more

Data-DrivenWater Allocation under Climate Uncertainty: A Distributionally Robust Approach

This paper investigates the application of techniques from distributionally robust optimization (DRO) to water allocation under future uncertainty. Specifically, we look at a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The main … Read more

Multistage stochastic programs with a random number of stages: dynamic programming equations, solution methods, and application to portfolio selection

We introduce the class of multistage stochastic optimization problems with a random number of stages. For such problems, we show how to write dynamic programming equations and detail the Stochastic Dual Dynamic Programming algorithm to solve these equations. Finally, we consider a portfolio selection problem over an optimization period of random duration. For several instances … Read more