A Quantitative Comparison of Risk Measures

The choice of a risk measure reflects a subjective preference of the decision maker in many managerial, or real world economic problem formulations. To evaluate the impact of personal preferences it is thus of interest to have comparisons with other risk measures at hand. This paper develops a framework for comparing different risk measures. We … Read more

Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization

This paper presents an approach to non-stationary policy search for finite-horizon, discrete-time Markovian decision problems with large state spaces, constrained action sets, and a risk-sensitive optimality criterion. The methodology relies on modeling time variant policy parameters by a non-parametric response surface model for an indirect parametrized policy motivated by the Bellman equation. Through the interpolating … Read more

A Stochastic Programming Approach for Shelter Location and Evacuation Planning

Shelter location and traffic allocation decisions are critical for an efficient evacuation plan. In this study, we propose a scenario-based two-stage stochastic evacuation planning model that optimally locates shelter sites and that assigns evacuees to nearest shelters and to shortest paths within a tolerance degree to minimize the expected total evacuation time. Our model considers … Read more

Integer Programming Approaches for Appointment Scheduling with Random No-shows and Service Durations

We consider a single-server scheduling problem given a fixed sequence of appointment arrivals with random no-shows and service durations. The probability distribution of the uncertain parameters is assumed to be ambiguous and only the support and first moments are known. We formulate a class of distributionally robust (DR) optimization models that incorporate the worst-case expectation/conditional … Read more

SDDP for multistage stochastic programs: Preprocessing via scenario reduction

Even with recent enhancements, computation times for large-scale multistage problems with risk-averse objective functions can be very long. Therefore, preprocessing via scenario reduction could be considered as a way to significantly improve the overall performance. Stage-wise backward reduction of single scenarios applied to a fixed branching structure of the tree is a promising tool for … Read more

Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators

We investigate the asymptotic behavior of a stochastic version of the forward-backward splitting algorithm for finding a zero of the sum of a maximally monotone set-valued operator and a cocoercive operator in Hilbert spaces. Our general setting features stochastic approximations of the cocoercive operator and stochastic perturbations in the evaluation of the resolvents of the … Read more

Uniform Convergence of Sample Average Approximation with Adaptive Importance Sampling

We study sample average approximations under adaptive importance sampling. Based on a Banach-space-valued martingale strong law of large numbers, we establish uniform convergence of the sample average approximation to the function being approximated. In the optimization context, we obtain convergence of the optimal value and optimal solutions of the sample average approximation. CitationTechnical Report IEMS … Read more

BOUNDS AND APPROXIMATIONS FOR MULTISTAGE STOCHASTIC PROGRAMS

Consider (typically large) multistage stochastic programs, which are defined on scenario trees as the basic data structure. It is well known that the computational complexity of the solution depends on the size of the tree, which itself increases typically exponentially fast with its height, i.e. the number of decision stages. For this reason approximations which … Read more

Data-Driven Risk-Averse Two-Stage Stochastic Program with ζ-Structure Probability Metrics

The traditional two-stage stochastic programming approach assumes the distribution of the random parameter in a problem is known. In most practices, however, the distribution is actually unknown. Instead, only a series of historic data are available. In this paper, we develop a data-driven stochastic optimization approach to providing a risk-averse decision making under uncertainty. In … Read more

Randomized Derivative-Free Optimization of Noisy Convex Functions

We propose STARS, a randomized derivative-free algorithm for unconstrained optimization when the function evaluations are contaminated with random noise. STARS takes dynamic, noise-adjusted smoothing step-sizes that minimize the least-squares error between the true directional derivative of a noisy function and its finite difference approximation. We provide a convergence rate analysis of STARS for solving convex … Read more