Distributionally Robust Optimization with Matrix Moment Constraints: Lagrange Duality and Cutting Plane Methods

A key step in solving minimax distributionally robust optimization (DRO) problems is to reformulate the inner maximization w.r.t. probability measure as a semiinfinite programming problem through Lagrange dual. Slater type conditions have been widely used for zero dual gap when the ambiguity set is defined through moments. In this paper, we investigate effective ways for … Read more

Risk-Averse Two-Stage Stochastic Program with Distributional Ambiguity

In this paper, we develop a risk-averse two-stage stochastic program (RTSP) which explicitly incorporates the distributional ambiguity covering both discrete and continuous distributions. Starting from a set of historical data samples, we construct a confidence set for the ambiguous probability distribution through nonparametric statistical estimation of its density function. We then formulate RTSP from the … Read more

Two approaches to constrained stochastic optimal control problems

In this article, we study and compare two approaches to solving stochastic optimal control problems with an expectation constraint on the final state. The case of a probability constraint is included in this framework. The first approach is based on a dynamic programming principle and the second one uses Lagrange relaxation. These approaches can be … Read more

Data-Driven Risk-Averse Stochastic Optimization with Wasserstein Metric

The traditional two-stage stochastic program approach is to minimize the total expected cost with the consideration of parameter uncertainty, and the distribution of the random parameters is assumed to be known. However, in most practices, the actual distribution of the random parameters is not known, and only a certain amount of historical data are available. … Read more

Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of … Read more

Distributionally robust expectation inequalities for structured distributions

Quantifying the risk of unfortunate events occurring, despite limited distributional information, is a basic problem underlying many practical questions. Indeed, quantifying constraint violation probabilities in distributionally robust programming or judging the risk of financial positions can both be seen to involve risk quantification, notwithstanding distributional ambiguity. In this work we discuss worst-case probability and conditional … Read more

Decomposition algorithm for large-scale two-stage unit-commitment

Everyday, electricity generation companies submit a generation schedule to the grid operator for the coming day; computing an optimal schedule is called the unit-commitment problem. Generation companies can also occasionally submit changes to the schedule, that can be seen as intra-daily incomplete recourse actions. In this paper, we propose a two-stage formulation of unit-commitment, wherein … Read more

Stochastic Optimization using a Trust-Region Method and Random Models

In this paper, we propose and analyze a trust-region model-based algorithm for solving unconstrained stochastic optimization problems. Our framework utilizes random models of an objective function $f(x)$, obtained from stochastic observations of the function or its gradient. Our method also utilizes estimates of function values to gauge progress that is being made. The convergence analysis … Read more

A Comment on “Computational Complexity of Stochastic Programming Problems”

Although stochastic programming problems were always believed to be computationally challenging, this perception has only recently received a theoretical justification by the seminal work of Dyer and Stougie (Mathematical Programming A, 106(3):423–432, 2006). Amongst others, that paper argues that linear two-stage stochastic programs with fixed recourse are #P-hard even if the random problem data is … Read more

Extension and Implementation of Homogeneous Self-dual Methods for Symmetric Cones under Uncertainty

Homogeneous self-dual algorithms for stochastic semidefinite programs with finite event space has been proposed by Jin et al. in [12]. Alzalg [8], has adopted their work to derive homogeneous self-dual algorithms for stochastic second-order programs with finite event space. In this paper, we generalize these two results to derive homogeneous self-dual algorithms for stochastic programs … Read more