Exact and approximate formulations for the close-enough TSP

This work addresses the Close-Enough Traveling Salesman Problem (CETSP), a variant of the classic traveling salesman problem in which we seek to visit neighborhoods of points in the plane (defined as disks) rather than specific points. We present two exact formulations for this problem based on second-order cone programming (SOCP), along with approximated mixed-integer linear … Read more

Facial reduction for nice (and non-nice) convex programs

Consider the primal problem of minimizing the sum of two closed proper convex functions \(f\) and \(g\). If the relative interiors of the domains of \(f\) and \(g\) intersect, then the primal problem and its corresponding Fenchel dual satisfy strong duality. When these relative interiors fail to intersect, pathologies and numerical difficulties may occur. In … Read more

Semidefinite hierarchies for diagonal unitary invariant bipartite quantum states

We investigate questions about the cone \(\mathrm{SEP}_n\) of separable bipartite states, consisting of the Hermitian matrices acting on \(\mathbb{C}^n\otimes\mathbb{C}^n\) that can be written as conic combinations of rank one matrices of the form \(xx^*\otimes yy^*\) with \(x,y\in\mathbb{C}^n\). Bipartite states that are not separable are said to be entangled. Detecting quantum entanglement is a fundamental task … Read more

Stability analysis of parameterized models relative to nonconvex constraints

For solution mappings of parameterized models (such as optimization problems, variational inequalities, and generalized equations), standard stability inevitably fails as the parameter approaches the boundary of the feasible domain. One remedy is relative stability restricted to a constraint set (e.g., the feasible domain), which is our focus in this paper. We establish generalized differentiation criteria … Read more

Weight reduction inequalities revisited

In this paper, we have proposed a strengthening of well known weight reduction inequalities, when the maximum weighted item in the pack is not unique. We provide some sufficient conditions under which these inequalities are facet-defining. Furthermore we provide some conditions under which the strengthened inequality strictly dominates the weight reduction inequality. We also introduce … Read more

Fast and Simple Multiclass Data Segmentation: An Eigendecomposition and Projection-Free Approach

Graph-based machine learning has seen an increased interest over the last decade with many connections to other fields of applied mathematics. Learning based on partial differential equations, such as the phase-field Allen-Cahn equation, allows efficient handling of semi-supervised learning approaches on graphs. The numerical solution of the graph Allen-Cahn equation via a convexity splitting or … Read more

Density, Determinacy, Duality and a Regularized Moment-SOS Hierarchy

The standard moment-sum-of-squares (SOS) hierarchy is a powerful method for solving global polynomial optimization problems. However, its convergence relies on Putinar’s Positivstellensatz, which requires the feasible set to satisfy the algebraic Archimedean property. In this paper, we introduce a regularized moment-SOS hierarchy capable of handling problems on unbounded sets or bounded sets violating the Archimedean … Read more

On constraint qualifications for lower-level sets and an augmented Lagrangian method

In this paper we consider an augmented Lagrangian method with general lower-level constraints, that is, where some of the constraints are penalized while others are kept as subproblem constraints. Motivated by some recent results on optimization problems on manifolds, we present a general theory of global convergence when a feasible approximate KKT point is found … Read more

Modeling Bloons Tower Defense as a temporal two-dimensional knapsack problem with irregular shapes and side constraints: integer programming-based approaches

In Tower Defense (TD) games, the objective is to defend a specific point on the game map from mobile units by constructing towers with offensive capabilities. In this work, we focus on Bloons Tower Defense (Bloons TD), one of the earliest and most prominent TD games. We show that the problem of finding tower configurations … Read more

The Fulfillment Regionalization Problem

In many retail industries, the retailer can choose the inventory location or fulfillment center (FC) that fulfills an order, yielding opportunities for inventory pooling and product selection expansion. However, fulfillment decisions are complex and must consider cost and speed, among various factors. With the unprecedented growth of the retail industry, companies must look for strategies … Read more