Frank-Wolfe and friends: a journey into projection-free first-order optimization methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a remarkable revival, fuelled by the need of fast and reliable first-order optimization methods in Data Science and other relevant application areas. This review tries to explain the success of this approach by illustrating versatility … Read more

The Graphical Traveling Salesperson Problem has no Integer Programming Formulation in the Original Space

The Graphical Traveling Salesperson Problem (GTSP) is the problem of assigning, for a given weighted graph, a nonnegative number x_e to each edge e such that the induced multi-subgraph is of minimum weight among those that are spanning, connected and Eulerian. Naturally, known mixed-integer programming formulations use integer variables x_e in addition to others. Denis … Read more

Cardinality Minimization, Constraints, and Regularization: A Survey

We survey optimization problems that involve the cardinality of variable vectors in constraints or the objective function. We provide a unified viewpoint on the general problem classes and models, and give concrete examples from diverse application fields such as signal and image processing, portfolio selection, or machine learning. The paper discusses general-purpose modeling techniques and … Read more

On the Formulation Dependence of Convex Hull Pricing

Convex hull pricing provides a potential solution for reducing out-of-market payments in wholesale electricity markets. This paper revisits the theoretical construct of convex hull pricing and explores its important but underappreciated formulation-dependence property. Namely, convex hull prices may change for different formulations of the same unit commitment problem. After a conceptual exposition of the property, … Read more

New Valid Inequalities and Formulation for the Static Chance-constrained Lot-Sizing Problem

We study the static chance-constrained lot sizing problem, in which production decisions over a planning horizon are made before knowing random future demands, and the backlog and inventory variables are then determined by the demand realizations. The chance constraint imposes a service level constraint requiring that the probability that any backlogging is required should be … Read more

Escaping strict saddle points of the Moreau envelope in nonsmooth optimization

Recent work has shown that stochastically perturbed gradient methods can efficiently escape strict saddle points of smooth functions. We extend this body of work to nonsmooth optimization, by analyzing an inexact analogue of a stochastically perturbed gradient method applied to the Moreau envelope. The main conclusion is that a variety of algorithms for nonsmooth optimization … Read more

Analysis of the Frank-Wolfe Method for Convex Composite Optimization involving a Logarithmically-Homogeneous Barrier

We present and analyze a new generalized Frank-Wolfe method for the composite optimization problem (P): F*:= min_x f(Ax) + h(x), where f is a \theta-logarithmically-homogeneous self-concordant barrier and the function h has bounded domain but is possibly non-smooth. We show that our generalized Frank-Wolfe method requires O((Gap_0 + \theta + Var_h)\ln(\delta_0) + (\theta + Var_h)^2/\epsilon) … Read more

Second-Order Conic and Polyhedral Approximations of the Exponential Cone: Application to Mixed-Integer Exponential Conic Programs

Exponents and logarithms exist in many important applications such as logistic regression, maximum likelihood, relative entropy and so on. Since the exponential cone can be viewed as the epigraph of perspective of the natural exponential function or the hypograph of perspective of the natural logarithm function, many mixed-integer nonlinear convex programs involving exponential or logarithm … Read more

A Gentle and Incomplete Introduction to Bilevel Optimization

These are lecture notes on bilevel optimization. The class of bilevel optimization problems is formally introduced and motivated using examples from different fields. Afterward, the main focus is on how to solve linear and mixed-integer linear bilevel optimization problems. To this end, we first consider various single-level reformulations of bilevel optimization problems with linear or … Read more

Alternative Regularizations for OA Algorithms for Convex MINLP

In this work, we extend the regularization framework from Kronqvist et al. (https://doi.org/10.1007/s10107-018-1356-3) by incorporating several new regularization functions and develop a regularized single-tree search method for solving convex mixed-integer nonlinear programming (MINLP) problems. We propose a set of regularization functions based on distance-metrics and Lagrangean approximations, used in the projection problem for finding new … Read more