A Separation Algorithm for the Simple Plant Location Problem

The Simple Plant Location Problem (SPLP) is a well-known NP-hard optimisation problem with applications in logistics. Although many families of facet-defining inequalities are known for the associated polyhedron, very little work has been done on separation algorithms. We present the first ever polynomial-time separation algorithm for the SPLP that separates exactly over an exponentially large … Read more

The vehicle allocation problem: alternative formulation and branch-and-price method

The Vehicle Allocation Problem (VAP) consists of repositioning empty vehicles across a set of terminals over a given planning horizon so as to maximize the profits generated from serving demand for transportation of goods between pair of terminals. This problem has been classically modeled using an extended space-time network which captures the staging of the … Read more

Two-Stage Robust Telemedicine Assignment Problem with Uncertain Service Duration and No-Show Behaviours

The current pandemic of COVID-19 has caused significant strain on medical center resources, which are the main places to provide the rapid response to COVID-19 through the adoption of telemedicine. Thus healthcare managers must make an effective assignment plan for the patients and telemedical doctors when providing telemedicine services. Motivated by this, we present the … Read more

Homogeneous polynomials and spurious local minima on the unit sphere

We consider degree-d forms on the Euclidean unit sphere. We specialize to our setting a genericity result by Nie obtained in a more general framework. We exhibit an homogeneous polynomial Res in the coefficients of f, such that if Res(f) is not zero then all points that satisfy first- and second-order necessary optimality conditions are … Read more

A globally trust-region LP-Newton method for nonsmooth functions under the Hölder metric subregularity

We describe and analyse a globally convergent algorithm to find a possible nonisolated zero of a piecewise smooth mapping over a polyhedral set, such formulation includes Karush-Kuhn-Tucker (KKT) systems, variational inequalities problems, and generalized Nash equilibrium problems. Our algorithm is based on a modification of the fast locally convergent Linear Programming (LP)-Newton method with a … Read more

A MILP Approach to DRAM Access Worst-Case Analysis

The Dynamic Random Access Memory (DRAM) is among the major points of contention in multi-core systems. We consider a challenging optimization problem arising in worst-case performance analysis of systems architectures: computing the worst-case delay (WCD) experienced when accessing the DRAM due to the interference of contending requests. The WCD is a crucial input for micro-architectural … Read more

An augmented Lagrangian method exploiting an active-set strategy and second-order information

In this paper, we consider nonlinear optimization problems with nonlinear equality constraints and bound constraints on the variables. For the solution of such problems, many augmented Lagrangian methods have been defined in the literature. Here, we propose to modify one of these algorithms, namely ALGENCAN by Andreani et al., in such a way to incorporate … Read more

Directional TGV-based image restoration under Poisson noise

We are interested in the restoration of noisy and blurry images where the texture mainly follows a single direction (i.e., directional images). Problems of this type arise, for example, in microscopy or computed tomography for carbon or glass fibres. In order to deal with these problems, the Directional Total Generalized Variation (DTGV) was developed by … Read more

Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces

In vector optimization, it is of increasing interest to study problems where the image space (a real linear space) is preordered by a not necessarily solid (and not necessarily pointed) convex cone. It is well-known that there are many examples where the ordering cone of the image space has an empty (topological / algebraic) interior, … Read more

A Nonmonontone Accelerated Proximal Gradient Method with Variable Stepsize Strategy for Nonsmooth and Nonconvex Minimization Problems

We propose a new nonmonontone accelerated proximal gradient method with variable stepsize strategy for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. In this algorithm, the objective function value be allowed to increase discontinuously, but is decreasing from the overall point of view. The variable stepsize strategy don’t … Read more