Probabilistic guarantees in Robust Optimization

We develop a general methodology to derive probabilistic guarantees for solutions of robust optimization problems. Our analysis applies broadly to any convex compact uncertainty set and to any constraint affected by uncertainty in a concave manner, under minimal assumptions on the underlying stochastic process. Namely, we assume that the coordinates of the noise vector are … Read more

Substantiation of the Backpropagation Technique via the Hamilton-Pontryagin Formalism for Training Nonconvex Nonsmooth Neural Networks

The paper observes the similarity between the stochastic optimal control of discrete dynamical systems and the training multilayer neural networks. It focuses on contemporary deep networks with nonconvex nonsmooth loss and activation functions. In the paper, the machine learning problems are treated as nonconvex nonsmooth stochastic optimization problems. As a model of nonsmooth nonconvex dependences, … Read more

Worst-case Complexity Bounds of Directional Direct-search Methods for Multiobjective Optimization

Direct Multisearch is a well-established class of algorithms, suited for multiobjective derivative-free optimization. In this work, we analyze the worst-case complexity of this class of methods in its most general formulation for unconstrained optimization. Considering nonconvex smooth functions, we show that to drive a given criticality measure below a specific positive threshold, Direct Multisearch takes … Read more

Robust Optimization with Decision-Dependent Information Discovery

Robust optimization (RO) is a popular paradigm for modeling and solving two- and multi-stage decision-making problems affected by uncertainty. In many real-world applications, such as R&D project selection, production planning, or preference elicitation for product or policy recommendations, the time of information discovery is decision-dependent and the uncertain parameters only become observable after an often costly … Read more

Generalized Gradients in Problems of Dynamic Optimization, Optimal Control, and Machine Learning

In this work, nonconvex nonsmooth problems of dynamic optimization, optimal control in discrete time (including feedback control), and machine learning are considered from a common point of view. An analogy is observed between tasks of controlling discrete dynamic systems and training multilayer neural networks with nonsmooth target function and connections. Methods for calculating generalized gradients … Read more

Distance geometry and data science

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its … Read more

Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach

This paper introduces a method for computing points satisfying the second-order necessary optimality conditions in constrained nonconvex minimization. The method comprises two independent steps corresponding to the first and second order conditions. The first-order step is a generic closed map algorithm which can be chosen from a variety of first-order algorithms, making it The second-order … Read more

On the Convergence to Stationary Points of Deterministic and Randomized Feasible Descent Directions Methods

This paper studies the class of nonsmooth nonconvex problems in which the difference between a continuously differentiable function and a convex nonsmooth function is minimized over linear constraints. Our goal is to attain a point satisfying the stationarity necessary optimality condition, defined as the lack of feasible descent directions. Although elementary in smooth optimization, this … Read more

A Computationally Efficient Algorithm for Computing Convex Hull Prices

Electricity markets worldwide allow participants to bid non-convex production offers. While non-convex offers can more accurately reflect a resource’s capabilities, they create challenges for market clearing processes. For example, system operators may be required to execute side payments to participants whose costs are not covered through energy sales as determined via traditional locational marginal pricing … Read more

Robust Optimal Aiming Strategies in Concentrated Solar Tower Power Plants

A concentrated solar tower power plant consists of a receiver mounted atop of a central tower and a field of movable mirrors called heliostats. The heliostats concentrate solar radiation onto the receiver where a fluid is heated to produce electricity in a conventional thermodynamic cycle. Aiming strategies are used to assign each heliostat to an … Read more