An algorithm for computing Frechet means on the sphere

For most optimisation methods an essential assumption is the vector space structure of the feasible set. This condition is not fulfilled if we consider optimisation problems over the sphere. We present an algorithm for solving a special global problem over the sphere, namely the determination of Frechet means, which are points minimising the mean distance … Read more

ADMM for Multiaffine Constrained Optimization

We propose an expansion of the scope of the alternating direction method of multipliers (ADMM). Specifically, we show that ADMM, when employed to solve problems with multiaffine constraints that satisfy certain easily verifiable assumptions, converges to the set of constrained stationary points if the penalty parameter in the augmented Lagrangian is sufficiently large. When the … Read more

A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty

We focus on a problem of locating recharging stations in one-way station based electric car sharing systems which operate under demand uncertainty. We model this problem as a mixed integer stochastic program and develop a Benders decomposition algorithm based on this formulation. We integrate a stabilization procedure to our algorithm and conduct a large-scale experimental … Read more

A Computational Investigation on the Strength of Dantzig-Wolfe Reformulations

In Dantzig-Wolfe reformulation of an integer program one convexifies a subset of the constraints, leading to potentially stronger dual bounds from the respective linear programming relaxation. As the subset can be chosen arbitrarily, this includes the trivial cases of convexifying no and all constraints, resulting in a weakest and strongest reformulation, respectively. Our computational study … Read more

A Riemannian Conjugate Gradient Algorithm with Implicit Vector Transport for Optimization on the Stiefel Manifold

In this paper, a reliable curvilinear search algorithm for solving optimization problems over the Stiefel manifold is presented. This method is inspired by the conjugate gradient method, with the purpose of obtain a new direction search that guarantees descent of the objective function in each iteration. The merit of this algorithm lies in the fact … Read more

Network Models for Multiobjective Discrete Optimization

This paper provides a novel framework for solving multiobjective discrete optimization problems with an arbitrary number of objectives. Our framework formulates these problems as network models, in that enumerating the Pareto frontier amounts to solving a multicriteria shortest path problem in an auxiliary network. We design tools and techniques for exploiting the network model in … Read more

Cubic Regularization Method based on Mixed Factorizations for Unconstrained Minimization

Newton’s method for unconstrained optimization, subject to proper regularization or special trust-region procedures, finds first-order stationary points with precision $\varepsilon$ employing, at most, $O(\varepsilon^{-3/2})$ functional and derivative evaluations. However, the computer work per iteration of the best-known implementations may need several factorizations per iteration or may use rather expensive matrix decompositions. In this paper, we … Read more

Algorithms and Convergence Results of Projection Methods for Inconsistent Feasibility Problems: A Review

The convex feasibility problem (CFP) is to find a feasible point in the intersection of finitely many convex and closed sets. If the intersection is empty then the CFP is inconsistent and a feasible point does not exist. However, algorithmic research of inconsistent CFPs exists and is mainly focused on two directions. One is oriented … Read more

Concise Complexity Analyses for Trust-Region Methods

Concise complexity analyses are presented for simple trust region algorithms for solving unconstrained optimization problems. In contrast to a traditional trust region algorithm, the algorithms considered in this paper require certain control over the choice of trust region radius after any successful iteration. The analyses highlight the essential algorithm components required to obtain certain complexity … Read more

Uniqueness of DRS as the 2 Operator Resolvent-Splitting and Impossibility of 3 Operator Resolvent-Splitting

Given the success of Douglas-Rachford splitting (DRS), it is natural to ask whether DRS can be generalized. Are there are other 2 operator splittings? Can DRS be generalized to 3 operators? This work presents the answers: no and no. In a certain sense, DRS is the unique 2 operator resolvent-splitting, and generalizing DRS to 3 … Read more