Moulin Mechanism Design for Freight Consolidation

In freight consolidation, a “fair” cost allocation scheme is critical for forming and sustaining horizontal cooperation that leads to reduced transportation cost. We study a cost-sharing problem in a freight consolidation system with one consolidation center and a common destination. In particular, we design a mechanism that collects bids from a set of suppliers, and … Read more

Perturbation Analysis of Singular Semidefinite Program and Its Application to a Control Problem

We consider the sensitivity of semidefinite programs (SDPs) under perturbations. It is well known that the optimal value changes continuously under perturbations on the right hand side in the case where the Slater condition holds in the primal problems. In this manuscript, we observe by investigating a concrete SDP that the optimal value can be … Read more

Robust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm

Blackbox optimization problems are often contaminated with numerical noise, and direct search methods such as the Mesh Adaptive Direct Search (MADS) algorithm may get stuck at solutions artificially created by the noise. We propose a way to smooth out the objective function of an unconstrained problem using previously evaluated function evaluations, rather than resampling points. … Read more

A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems

We develop a fast and robust algorithm for solving large scale convex composite optimization models with an emphasis on the $\ell_1$-regularized least squares regression (Lasso) problems. Despite the fact that there exist a large number of solvers in the literature for the Lasso problems, we found that no solver can efficiently handle difficult large scale … Read more

Faster Alternating Direction Method of Multipliers with a Worst-case O(1/n^2) Convergence Rate

The alternating direction method of multipliers (ADMM) is being widely used for various convex programming models with separable structures arising in specifically many scientific computing areas. The ADMM’s worst-case O(1/n) convergence rate measured by the iteration complexity has been established in the literature when its penalty parameter is a constant, where n is the iteration … Read more

The Power of Diversity: Data-Driven Robust Predictive Control for Energy Efficient Buildings and Districts

The cooperative energy management of aggregated buildings has recently received a great deal of interest due to substantial potential energy savings. These gains are mainly obtained in two ways: (i) Exploiting the load shifting capabilities of the cooperative buildings; (ii) Utilizing the expensive but energy efficient equipment that is commonly shared by the building community … Read more

Heuristics for Packing Semifluids

Physical properties of materials are seldom studied in the context of packing problems. In this work we study the behavior of semifluids: materials with particular characteristics, that share properties both with solids and with fluids. We describe the importance of some specific semifluids in an industrial context, and propose methods for tackling the problem of … Read more

A computationally useful algebraic representation of nonlinear disjunctive convex sets using the perspective function

Nonlinear disjunctive convex sets arise naturally in the formulation or solution methods of many discrete–continuous optimization problems. Often, a tight algebraic representation of the disjunctive convex set is sought, with the tightest such representation involving the characterization of the convex hull of the disjunctive convex set. In the most general case, this can be explicitly … Read more

Complexity bounds for primal-dual methods minimizing the model of objective function

We provide Frank-Wolfe ($\equiv$ Conditional Gradients) method with a convergence analysis allowing to approach a primal-dual solution of convex optimization problem with composite objective function. Additional properties of complementary part of the objective (strong convexity) significantly accelerate the scheme. We also justify a new variant of this method, which can be seen as a trust-region … Read more

Towards Simulation Based Mixed-Integer Optimization with Differential Equations

We propose a decomposition based method for solving mixed-integer nonlinear optimization problems with “black-box” nonlinearities, where the latter, e.g., may arise due to differential equations or expensive simulation runs. The method alternatingly solves a mixed-integer linear master problem and a separation problem for iteratively refining the mixed-integer linear relaxation of the nonlinearity. We prove that … Read more