Semidefinite Optimization Approaches to Applications in Facility Layout and Logistics

The main contributions of this thesis are the comparison of existing and the design of new exact approaches based on linear, quadratic and semidefinite relaxations for row layout problems and several applications in logistic. In particular we demonstrate that our suggested semidefinite approach is the strongest exact method to date for most row layout problems. … Read more

Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs

Multistage stochastic mixed-integer programming is a powerful modeling paradigm appropriate for many problems involving a sequence of discrete decisions under uncertainty; however, they are difficult to solve without exploiting special structures. We present scenario-tree decomposition to establish bounds for unstructured multistage stochastic mixed-integer programs. Our method decomposes the scenario tree into a number of smaller … Read more

Robust Unit Commitment with Dispatchable Wind: An LP Reformulation of the Second Stage

Abstract— The increasing penetration of uncertain generation such as wind and solar in power systems imposes new challenges to the Unit Commitment (UC) problem, one of the most critical tasks in power systems operations. The two most common approaches to address these challenges — stochastic and robust optimization — have drawbacks that prevent or restrict their … Read more

Tight extended formulations for independent set

This paper describes tight extended formulations for independent set. The first formulation is for arbitrary independence systems and has size $O(n+\mu)$, where $\mu$ denotes the number of inclusion-wise maximal independent sets. Consequently, the extension complexity of the independent set polytope of graphs is $O(1.4423^n)$. The size $O(2^\tw n)$ of the second extended formulation depends on … Read more

A Semidefinite Optimization Approach to the Parallel Row Ordering Problem

The $k$-Parallel Row Ordering Problem (kPROP) is an extension of the Single-Row Facility Layout Problem (SRFLP) that considers arrangements of the departments along more than one row. We propose an exact algorithm for the kPROP that extends the semidefinite programming approach for the SRFLP by modelling inter-row distances as products of ordering variables. For k=2 … Read more

The Checkpoint Ordering Problem

We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to … Read more

Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization

We consider a generic convex optimization problem associated with regularized empirical risk minimization of linear predictors. The problem structure allows us to reformulate it as a convex-concave saddle point problem. We propose a stochastic primal-dual coordinate (SPDC) method, which alternates between maximizing over a randomly chosen dual variable and minimizing over the primal variable. An … Read more

RBFOpt: an open-source library for black-box optimization with costly function evaluations

We consider the problem of optimizing an unknown function given as an oracle over a mixed-integer box-constrained set. We assume that the oracle is expensive to evaluate, so that estimating partial derivatives by finite differences is impractical. In the literature, this is typically called a black-box optimization problem with costly evaluation. This paper describes the … Read more

On the worst case performance of the steepest descent algorithm for quadratic functions

\begin{abstract} The existing choices for the step lengths used by the classical steepest descent algorithm for minimizing a convex quadratic function require in the worst case $ \Or(C\log(1/\eps)) $ iterations to achieve a precision $ \eps $, where $ C $ is the Hessian condition number. We show how to construct a sequence of step … Read more

On the iterate convergence of descent methods for convex optimization

We study the iterate convergence of strong descent algorithms applied to convex functions. We assume that the function satisfies a very simple growth condition around its minimizers, and then show that the trajectory described by the iterates generated by any such method has finite length, which proves that the sequence of iterates converge. CitationFederal University … Read more