How Good Are Sparse Cutting-Planes?

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-\&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In order to understand this question better, given a polyope $P$ (e.g. the integer hull of … Read more

Chance-Constrained Multi-Terminal Network Design Problems

We consider a reliable network design problem under uncertain edge failures. Our goal is to select a minimum-cost subset of edges in the network to connect multiple terminals together with high probability. This problem can be seen as a stochastic variant of the Steiner tree problem. We propose a scenario-based Steiner cut formulation, and a … Read more

Distributionally Robust Discrete Optimization with Entropic Value-at-Risk

We study the discrete optimization problem under the distributionally robust framework. We optimize the Entropic Value-at-Risk, which is a coherent risk measure and is also known as Bernstein approximation for the chance constraint. We propose an efficient approximation algorithm to resolve the problem via solving a sequence of nominal problems. The computational results show that … Read more

Dynamic vs. Static Optimization of Crossdocking Operations

To improve operations commonly found in today’s crossdocks, we offer a door assignment optimization tool that will reduce the distance travelled by goods across the crossdock, as well as workload and labor cost. The cross dock door assignment problem (CDAP) minimizes total distance traveled by the goods inside the crossdock where door capacities are limited … Read more

Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, … Read more

Error Bounds and Metric Subregularity

Necessary and sufficient criteria for metric subregularity (or calmness) of set-valued mappings between general metric or Banach spaces are treated in the framework of the theory of error bounds for a special family of extended real-valued functions of two variables. A classification scheme for the general error bound and metric subregularity criteria is presented. The … Read more

Relay Optimization Method

Insurance-linked securities portfolio with the VaR constraint optimization problem have a kind of weak dominance or ordering property, which enables us to reduce the variables’ dimensions gradually through exercising a genetic algorithm with randomly selected initial populations. This property also enables us to add boundary attraction potential to GA-MPC’s repair operator, among other modifications such … Read more

A DC (Difference of Convex functions) approach of the MPECs

This article deals with a study of the MPEC problem based on a reformulation to a DC problem (Difference of Convex functions). This reformulation is obtained by a partial penalization of the constraints. In this article we prove that a classical optimality condition for a DC program, if a constraint qualification is satisfied for MPEC, … Read more

An Sl1LP-Active Set Approach for Feasibility Restoration in Power Systems

We consider power networks in which it is not possible to satisfy all loads at the demand nodes, due to some attack or disturbance to the network. We formulate a model, based on AC power flow equations, to restore the network to feasibility by shedding load at demand nodes, but doing so in a way … Read more

Two-Term Disjunctions on the Second-Order Cone

Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixed-integer conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone, and develop a methodology to derive closed-form expressions for convex inequalities … Read more