A Branch-and-Cut Decomposition Algorithm for Solving Chance-Constrained Mathematical Programs with Finite Support

We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with nite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to nd provably good solutions in certain very special cases. Our approach … Read more

Neighborhood based heuristics for a Two-level Hierarchical Location Problem with modular node capacities

In many telecommunication network architectures a given set of client nodes must be served by different kinds of facility, which provide di fferent services and have diff erent capabilities. Such facilities must be located and dimensioned in the design phase. We tackle a particular location problem in which two sets of facilities, mid level and high level, … Read more

Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems

In this paper, we consider block-decomposition first-order methods for solving large-scale conic semidefinite programming problems. Several ingredients are introduced to speed-up the method in its pure form such as: an aggressive choice of stepsize for performing the extragradient step; use of scaled inner products in the primal and dual spaces; dynamic update of the scaled … Read more

A Computational Study and Survey of Methods for the Single-Row Facility Layout Problem

The single row facility layout problem (SRFLP) is an NP-hard combinatorial optimization problem that is concerned with the arrangement of n departments of given lengths on a line so as to minimize the weighted sum of the distances between department pairs. (SRFLP) is the one-dimensional version of the facility layout problem that seeks to arrange … Read more

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods

This paper presents an accelerated variant of the hybrid proximal extragradient (HPE) method for convex optimization, referred to as the accelerated HPE (A-HPE) method. Iteration-complexity results are established for the A-HPE method, as well as a special version of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE method are … Read more

Optimal construction of a fund of funds

We study the problem of diversifying a given initial capital over a finite number of investment funds that follow different trading strategies. The investment funds operate in a market where a finite number of underlying assets may be traded over finite discrete time. We present a numerical procedure for finding a diversification that is optimal … Read more

Stochastic programs without duality gaps

This paper studies dynamic stochastic optimization problems parametrized by a random variable. Such problems arise in many applications in operations research and mathematical finance. We give sufficient conditions for the existence of solutions and the absence of a duality gap. Our proof uses extended dynamic programming equations, whose validity is established under new relaxed conditions … Read more

Structured Sparsity via Alternating Direction Methods

We consider a class of sparse learning problems in high dimensional feature space regularized by a structured sparsity-inducing norm which incorporates prior knowledge of the group structure of the features. Such problems often pose a considerable challenge to optimization algorithms due to the non-smoothness and non-separability of the regularization term. In this paper, we focus … Read more

Optimality conditions of set-valued optimization problem involving relative algebraic interior in ordered linear spaces

In this paper, firstly, a generalized subconvexlike set-valued map involving the relative algebraic interior is introduced in ordered linear spaces. Secondly, some properties of a generalized subconvexlike set-valued map are investigated. Finally, the optimality conditions of set-valued optimization problem are established. Citation {\bf AMS 2010 Subject Classifications:} 90C26, 90C29, 90C30ArticleDownload View PDF

Hierarchical Classification via Orthogonal Transfer

We consider multiclass classification problems where the set of labels are organized hierarchically as a category tree. We associate each node in the tree with a classifier and classify the examples recursively from the root to the leaves. We propose a hierarchical Support Vector Machine (SVM) that encourages the classifier at each node of the … Read more