Optimal Direct Determination of Sparse Jacobian Matrices

It is well known that a sparse Jacobian matrix can be determined with fewer function evaluations or automatic differentiation \emph{passes} than the number of independent variables of the underlying function. In this paper we show that by grouping together rows into blocks one can reduce this number further. We propose a graph coloring technique for … Read more

Sums of Squares Relaxations of Polynomial Semidefinite Programs

A polynomial SDP (semidefinite program) minimizes a polynomial objective function over a feasible region described by a positive semidefinite constraint of a symmetric matrix whose components are multivariate polynomials. Sums of squares relaxations developed for polynomial optimization problems are extended to propose sums of squares relaxations for polynomial SDPs with an additional constraint for the … Read more

Two new proofs of Afriat’s theorem

We provide two new, simple proofs of Afriat’s celebrated theorem stating that a finite set of price-quantity observations is consistent with utility maximization if, and only if, the observations satisfy a variation of the Strong Axiom of Revealed Preference known as the Generalized Axiom of Revealed Preference. Citation Technical Report No. 1381, School of Operations … Read more

Local optima smoothing for global optimization

It is widely believed that in order to solve large scale global optimization problems an appropriate mixture of local approximation and global exploration is necessary. Local approximation, if first order information on the objective function is available, is efficiently performed by means of local optimization methods. Unfortunately, global exploration, in absence of some kind of … Read more

Characterizing polynomials with roots in a semi-algebraic set

Consider a real polynomial $p$ and a semi-algebraic subset $S$ of the complex plane, defined by finitely many polynomial inequalities $g_k(z,\bar{z}) \geq 0$ for some complex polynomials $\{g_k\}$. We provide necessary and sufficient conditions on the coefficients of $p$ for the zeros of $p$ to be in $S$. Citation IEEE Trans. Automatic Control 49 (2004), … Read more

Convergence Analysis of a Long-Step Primal-Dual Infeasible Interior-Point LP Algorithm Based on Iterative Linear Solvers

In this paper, we consider a modified version of a well-known long-step primal-dual infeasible IP algorithm for solving the linear program $\min\{c^T x : Ax=b, \, x \ge 0\}$, $A \in \Re^{m \times n}$, where the search directions are computed by means of an iterative linear solver applied to a preconditioned normal system of equations. … Read more

Lift-and-project for 0–1 programming via algebraic geometry

Recently, tools from algebraic geometry have been successfully applied to develop solution schemes for new classes of optimization problems. A central idea in these constructions is to express a polynomial that is positive on a given domain in terms of polynomials of higher degree so that its positivity is readily revealed. This resembles the “lifting” … Read more

Parallel Strategies for GRASP with path-relinking

A Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic for combinatorial optimization. It usually consists of a construction procedure based on a greedy randomized algorithm and local search. Path-relinking is an intensification strategy that explores trajectories that connect high quality solutions. We analyze two parallel strategies for GRASP with path-relinking and propose a criterion … Read more

The Network Packing Problem in Terrestrial Broadcasting

The introduction of digital technology all over Europe requires a complete and challenging re-planning of the actual terrestrial broadcasting system. In fact, in order to implement digital networks, transmitters and frequencies must be removed from the current analog networks. On the other hand, the service level (territory coverage) of analog networks must be preserved until … Read more

A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization

Let $f$ be a continuous function on $\Rl^n$, and suppose $f$ is continuously differentiable on an open dense subset. Such functions arise in many applications, and very often minimizers are points at which $f$ is not differentiable. Of particular interest is the case where $f$ is not convex, and perhaps not even locally Lipschitz, but … Read more