Asymptotic approximation method and its convergence on semi-infinite programming

The aim of this paper is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented making use of two general iscreteapproximation methods. Simultaneously, we discuss the consistenceand the epi-convergence of the asymptotic approximation problem. Citation School … Read more

Optimization problems with equilibrium constraints and their numerical solution

We consider a class of optimization problems with a generalized equation among the constraints. This class covers several problem types like MPEC (Mathematical Programs with Equilibrium Constraints) and MPCC (Mathematical Programs with Complementarity Constraints). We briefly review techniques used for numerical solution of these problems: penalty methods, nonlinear programming (NLP) techniques and Implicit Programming approach … Read more

On Compact Formulations for Integer Programs Solved by Column Generation

Column generation has become a powerful tool in solving large scale integer programs. We argue that most of the often reported compatibility issues between pricing oracle and branching rules disappear when branching decisions are based on the reduction of the variables of the oracle’s domain. This can be generalized to branching on variables of a … Read more

On the Representation and Characterization of Fullerene C60

An operation on trivalent graphs leads from the truncated cube to buckminsterfullerene, and C60 is the only fullerene with disjoint pentagons which can be obtained by this method. The construction and the proof emphasize maximal independent sets that contain two fifths of the vertices of trivalent graphs. In the case of C60, these sets define … Read more

An annotated bibliography of network interior point methods

This paper presents an annotated bibliography on interior point methods for solving network flow problems. We consider single and multi-commodity network flow problems, as well as preconditioners used in implementations of conjugate gradient methods for solving the normal systems of equations that arise in interior network flow algorithms. Applications in electrical engineering and miscellaneous papers … Read more

Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization

We study interior-point methods for optimization problems in the case of infeasibility or unboundedness. While many such methods are designed to search for optimal solutions even when they do not exist, we show that they can be viewed as implicitly searching for well-defined optimal solutions to related problems whose optimal solutions give certificates of infeasibility … Read more

A Local Convergence Theory of a Filter Line Search Method for Nonlinear Programming

In this paper the theory of local convergence for a class of line search filter type methods for nonlinear programming is presented. The algorithm presented here is globally convergent (see Chin [4]) and the rate of convergence is two-step superlinear. The proposed algorithm solves a sequence of quadratic progrmming subproblems to obtain search directions and … Read more

Smoothed Analysis of Interior-Point Algorithms: Termination

We perform a smoothed analysis of the termination phase of an interior-point method. By combining this analysis with the smoothed analysis of Renegar’s interior-point algorithm by Dunagan, Spielman and Teng, we show that the smoothed complexity of an interior-point algorithm for linear programming is $O (m^{3} \log (m/\sigma ))$. In contrast, the best known bound … Read more

Nonsmooth Matrix Valued Functions Defined by Singular Values

A class of matrix valued functions defined by singular values of nonsymmetric matrices is shown to have many properties analogous to matrix valued functions defined by eigenvalues of symmetric matrices. In particular, the (smoothed) matrix valued Fischer-Burmeister function is proved to be strongly semismooth everywhere. This result is also used to show the strong semismoothness … Read more

Solving large scale semidefinite programsvia an iterative solver onthe augmented systems

The search directions in an interior-point method for large scale semidefinite programming (SDP) can be computed by applying a Krylov iterative method to either the Schur complement equation (SCE) or the augmented equation. Both methods suffer from slow convergence as interior-point iterates approach optimality. Numerical experiments have shown that diagonally preconditioned conjugate residual method on … Read more