A Comparative Study of New Barrier Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization

Recently, so-called self-regular barrier functions for primal-dual interior-point methods (IPMs) for linear optimization were introduced. Each such barrier function is determined by its (univariate) self-regular kernel function. We introduce a new class of kernel functions. The class is defined by some simple conditions on the kernel function and its derivatives. These properties enable us to … Read more

The structured distance to ill-posedness for conic systems

An important measure of conditioning of a conic linear system is the size of the smallest structured perturbation making the system ill-posed. We show that this measure is unchanged if we restrict to perturbations of low rank. We thereby derive a broad generalization of the classical Eckart-Young result characterizing the distance to ill-posedness for a … Read more

A Fast Swap-based Local Search Procedure for Location Problems

We present a new implementation of a widely used swap-based local search procedure for the P-median problem, proposed in 1968 by Teitz and Bart. Our method produces the same output as the best alternatives described in the literature and, even though it does not have a better worst-case complexity, it can be significantly faster in … Read more

On the block-structured distance to non-surjectivity of sublinear mappings

We show that the block-structured distance to non-surjectivity of a set-valued sublinear mapping equals the reciprocal of a suitable block-structured norm of its inverse. This gives a natural generalization of the classical Eckart and Young identity for square invertible matrices. CitationMathematical Programming 103 (2005) pp. 561–573.

A Branch-and-Cut Algorithm for Graph Coloring

In a previous work, we proposed a new integer programming formulation for the graph coloring problem which, to a certain extent, avoids symmetry. We studied the facet structure of the 0/1-polytope associated with it. Based on these theoretical results, we present now a Branch-and-Cut algorithm for the graph coloring problem. Our computational experiences compare favorably … Read more

The Quadratic Selective Travelling Saleman Problem

A well-known extension of the Travelling Salesman Problem (TSP) is the Selective TSP (STSP): Each node has an associated profit and instead of visiting all nodes, the most profitable set of nodes, taking into account the tour cost, is visited. The Quadratic STSP (QSTSP) adds the additional complication that each pair of nodes have an … Read more

Bounds for the Quadratic Assignment Problem Using the Bundle Method

Semidefinite Programming (SDP) has recently turned out to be a very powerful tool for approximating some NP-hard problems. The nature of the Quadratic Assignment Problem suggests SDP as a way to derive tractable relaxation. We recall some SDP relaxations of QAP and solve them approximately using the Bundle Method. The computational results demonstrate the efficiency … Read more

ON THE LIMITING PROPERTIES OF THE AFFINE-SCALING DIRECTIONS

We study the limiting properties of the affine-scaling directions for linear programming problems. The worst-case angle between the affine-scaling directions and the objective function vector provides an interesting measure that has been very helpful in convergence analyses and in understanding the behaviour of various interior-point algorithms. We establish new relations between this measure and some … Read more

Parallel Interior Point Solver for Structured Quadratic Programs: Application to Financial Planning Problems

Issues of implementation of a library for parallel interior-point methods for quadratic programming are addressed. The solver can easily exploit any special structure of the underlying optimization problem. In particular, it allows a nested embedding of structures and by this means very complicated real-life optimization problems can be modeled. The efficiency of the solver is … Read more