A Decomposition Algorithm for Two-Stage Stochastic Programs with Nonconvex Recourse

In this paper, we have studied a decomposition method for solving a class of nonconvex two-stage stochastic programs, where both the objective and constraints of the second-stage problem are nonlinearly parameterized by the first-stage variable. Due to the failure of the Clarke regularity of the resulting nonconvex recourse function, classical decomposition approaches such as Benders … Read more

Optimizing investment allocation: a combination of Logistic Regression and Markowitz model

One of the biggest challenges in quantitative finance is the efficient allocation of capital. Thus, in this study, a two-step methodology was proposed, in which a combination of logistic regression and Markowitz model was performed to determine optimized portfolios. In this context, in the first step, fundamentalist indicators were used as inputs to the logistic … Read more

The Null Space Property of the Weighted $\ell_r-\ell_1$ Minimization

The null space property (NSP), which relies merely on the null space of the sensing matrix column space, has drawn numerous interests in sparse signal recovery. This article studies NSP of the weighted $\ell_r-\ell_1$ minimization. Several versions of NSP of the weighted $\ell_r-\ell_1$ minimization including the weighted $\ell_r-\ell_1$ NSP, the weighted $\ell_r-\ell_1$ stable NSP, the … Read more

Learning for Spatial Branching: An Algorithm Selection Approach

The use of machine learning techniques to improve the performance of branch-and-bound optimization algorithms is a very active area in the context of mixed integer linear problems, but little has been done for non-linear optimization. To bridge this gap, we develop a learning framework for spatial branching and show its efficacy in the context of … Read more

A general mathematical framework for constrained mixed-variable blackbox optimization problems with meta and categorical variables

A mathematical framework for modelling constrained mixed-variable optimization problems is presented in a blackbox optimization context. The framework introduces a new notation and allows solution strategies. The notation framework allows meta and categorical variables to be explicitly and efficiently modelled, which facilitates the solution of such problems. The new term meta variables is used to … Read more

Handling of constraints in multiobjective blackbox optimization

This work proposes the integration of two new constraint-handling approaches into the blackbox constrained multiobjective optimization algorithm DMulti-MADS, an extension of the Mesh Adaptive Direct Search (MADS) algorithm for single-objective constrained optimization. The constraints are aggregated into a single constraint violation function which is used either in a two-phase approach, where research of a feasible … Read more

On the Complexity of Finding Shortest Variable Disjunction Branch-and-Bound Proofs

We investigate the complexity of finding small branch-and-bound trees using variable disjunctions. We first show that it is not possible to approximate the size of a smallest branch-and-bound tree within a factor of 2^(1/5) in time 2^(\delta n) with \delta < 1/5, unless the strong exponential time hypothesis fails. Similarly, for any \varepsilon > 0, … Read more

A novel sequential optimality condition for smooth constrained optimization and algorithmic consequences

In the smooth constrained optimization setting, this work introduces the Domain Complementary Approximate Karush-Kuhn-Tucker (DCAKKT) condition, inspired by a sequential optimality condition recently devised for nonsmooth constrained optimization problems. It is shown that the augmented Lagrangian method can generate limit points satisfying DCAKKT, and it is proved that such a condition is not related to … Read more

Two-Stage Robust Optimization with Decision Dependent Uncertainty

The type of decision dependent uncertainties (DDUs) imposes a great challenge in decision making, while existing methodologies are not sufficient to support many real practices. In this paper, we present a systematic study to handle this challenge in two-stage robust optimization~(RO). Our main contributions include three sophisticated variants of column-and-constraint generation method to exactly compute … Read more

Operation of an ambulance fleet under uncertainty

We introduce two new optimization models for the dispatch of ambulances. These models are to our knowledge the first providing a full modelling of the operation of an ambulance fleet, taking into account all or almost all constraints of the problem. The first model, called the ambulance selection problem, is used when an emergency call … Read more