K-adaptability for two-stage stochastic optimization
ArticleDownload View PDF
ArticleDownload View PDF
This work proposes a combinatorial branch-and-bound (B&B) algorithm for the capacitated facility location problem under strict customer preferences (CFLP-SCP). We use combinatorial insights into the problem structure to do preprocessing, model branching implications, enforce feasibility or prove infeasibility in each node, select variables and derive primal and dual bounds in each node of the B&B … Read more
This tutorial provides an introduction to the use of decision diagrams for solving discrete optimization problems. A decision diagram is a graphical representation of the solution space, representing decisions sequentially as paths from a root node to a target node. By merging isomorphic subgraphs (or equivalent subproblems), decision diagrams can compactly represent an exponential solution … Read more
We consider a two-stage stochastic decision problem where the decision-maker has the opportunity to obtain information about the distribution of the random variables $\xi$ that appear in the problem through a set of discrete actions that we refer to as probing. Probing components of a random vector $\eta$ that is jointly-distributed with $\xi$ allows the … Read more
In the minimum spanning tree (MST) interdiction problem, we are given a graph \(G=(V,E)\) with edge weights, and want to find some \(X\subseteq E\) satisfying a knapsack constraint such that the MST weight in \((V,E\setminus X)\) is maximized. Since MSTs of \(G\) are the minimum weight bases in the graphic matroid of \(G\), this problem … Read more
In this paper, we consider a theoretical framework for comparing branch-and-bound with classical lift-and-project hierarchies. We simplify our analysis of streamlining the definition of branch-and-bound. We introduce “skewed $k$-trees” which give a hierarchy of relaxations that is incomparable to that of Sherali-Adams, and we show that it is much better for some instances. We also … Read more
One of the chief attractions of stochastic mixed-integer second-order cone programming is its diverse applications, especially in engineering (Alzalg and Alioui, {\em IEEE Access}, 10:3522-3547, 2022). The linear and nonlinear versions of this class of optimization problems are still unsolved yet. In this paper, we develop a hybrid optimization algorithm coupling branch-and-bound and primal-dual interior-point … Read more
In this paper, we propose a new global optimization approach for solving nonconvex optimization problems in which the nonconvex components are sums of products of convex functions. A broad class of nonconvex problems can be written in this way, such as concave minimization problems, difference of convex problems, and fractional optimization problems. Our approach exploits … Read more
We study the Compressed Sensing (CS) problem, which is the problem of finding the most sparse vector that satisfies a set of linear measurements up to some numerical tolerance. CS is a central problem in Statistics, Operations Research and Machine Learning which arises in applications such as signal processing, data compression, image reconstruction, and multi-label … Read more
Symmetry handling is a key technique for reducing the running time of branch-and-bound methods for solving mixed-integer linear programs. In this paper, we generalize the notion of (permutation) symmetries to mixed-integer semidefinite programs (MISDPs). We first discuss how symmetries of MISDPs can be automatically detected by finding automorphisms of a suitably colored auxiliary graph. Then … Read more