Branch-and-bound for biobjective mixed-integer linear programming

We present a generic branch-and-bound algorithm for finding all the Pareto solutions of a biobjective mixed-integer linear program. The main contributions are new algorithms for obtaining dual bounds at a node, checking node fathoming, presolve, and duality gap measurement. Our branch-and-bound is predominantly a decision space search method because the branching is performed on the … Read more

Branch and Bound based methods to minimize the energy consumed by an electrical vehicle on long travels with slopes

We consider the problem of minimization of the energy consumed by an electrical vehicle performing quite long travels with slopes. The model we address here, takes into account the electrical and mechanical differential equations of the vehicle. This yields a mixed-integer optimal control problem that can be approximated, using a methodology based on some decomposition … Read more

A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems

In this work we present a branch-and-bound (B&B) framework for the asymmetric prize-collecting Steiner tree problem (APCSTP). Several well-known network design problems can be transformed to the APCSTP, including the Steiner tree problem (STP), prize-collecting Steiner tree problem (PCSTP), maximum-weight connected subgraph problem (MWCS) and the node-weighted Steiner tree problem (NWSTP). The main component of … Read more

Minimization of Akaike’s Information Criterion in Linear Regression Analysis via Mixed Integer Nonlinear Program

Akaike’s information criterion (AIC) is a measure of the quality of a statistical model for a given set of data. We can determine the best statistical model for a particular data set by the minimization of the AIC. Since we need to evaluate exponentially many candidates of the model by the minimization of the AIC, … Read more

New solution methods for the block relocation problem

This technical report presents new solution methods for the block relocation problem (BRP). Although most of the existing work focuses on the restricted BRP, we tackle the unrestricted BRP, which yields more opportunities for optimisation. Our contributions include fast heuristics able to tackle very large instances within seconds, fast metaheuristics that provide very competitive performance … Read more

The Quadratic Shortest Path Problem: Complexity, Approximability, and Solution Methods

We consider the problem of finding a shortest path in a directed graph with a quadratic objective function (the QSPP). We show that the QSPP cannot be approximated unless P=NP. For the case of a convex objective function, an n-approximation algorithm is presented, where n is the number of nodes in the graph, and APX-hardness … Read more

Online Learning for Strong Branching Approximation in Branch-and-Bound

We present an online learning approach to variable branching in branch-and-bound for mixed-integer linear problems. Our approach consists in learning strong branching scores in an online fashion and in using them to take branching decisions. More specifically, numerical scores are used to rank the branching candidates. If, for a given variable, the learned approximation is … Read more

PIPS-SBB: A parallel distributed-memory branch-and-bound algorithm for stochastic mixed-integer programs

Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. To overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels … Read more

An Abstract Model for Branching and its Application to Mixed Integer Programming

The selection of branching variables is a key component of branch-and-bound algorithms for solving Mixed-Integer Programming (MIP) problems since the quality of the selection procedure is likely to have a significant effect on the size of the enumeration tree. State-of-the-art procedures base the selection of variables on their “LP gains”, which is the dual bound … Read more

An improved DSATUR-based Branch and Bound for the Vertex Coloring Problem

Given an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to each vertex of the graph in such a way that two adjacent vertices do not share the same color and the total number of colors is minimized. DSATUR based Branch and Bound (DSATUR) is an effective exact algorithm for the … Read more