COIN-OR METSlib: a Metaheuristics Framework in Modern C++.

The document describes COIN-OR METSlib, a C++ framework for local search based metaheuristics. METSlib has been used to implement a massively parallel VRP algorithm, a state of the art Vertex Coloring Problem solver, a Timetabling software, and in many other projects. ArticleDownload View PDF

An FPTAS for Optimizing a Class of Low-Rank Functions Over a Polytope

We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of nonlinear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme … Read more

A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined Into One

In this paper, we present a general framework for designing approximation schemes for combinatorial optimization problems in which the objective function is a combination of more than one function. Examples of such problems include those in which the objective function is a product or ratio of two linear functions, parallel machine scheduling problems with the … Read more

Facets for the Maximum Common Induced Subgraph Problem Polytope

This paper presents some strong valid inequalities for the Maximum Common Induced Subgraph Problem (MCIS) and the proofs that the inequalities are facet-defining under certain conditions. The MCIS is an NP-hard problem and, therefore, no polynomial time algorithm is known to solve it. In this context, the study of its polytope can help in the … Read more

A Computational Study and Survey of Methods for the Single-Row Facility Layout Problem

The single row facility layout problem (SRFLP) is an NP-hard combinatorial optimization problem that is concerned with the arrangement of n departments of given lengths on a line so as to minimize the weighted sum of the distances between department pairs. (SRFLP) is the one-dimensional version of the facility layout problem that seeks to arrange … Read more

The Symmetric Quadratic Traveling Salesman Problem

In the quadratic traveling salesman problem a cost is associated with any three nodes traversed in succession. This structure arises, e.g., if the succession of two edges represents energetic conformations, a change of direction or a possible change of transportation means. In the symmetric case, costs do not depend on the direction of traversal. We … Read more

Efficient Solutions for the Far From Most String Problem

Computational molecular biology has emerged as one of the most exciting interdisciplinary fields. It has currently benefited from concepts and theoretical results obtained by different scientific research communities, including genetics, biochemistry, and computer science. In the past few years it has been shown that a large number of molecular biology problems can be formulated as … Read more

Biased random-key genetic algorithms with applications in telecommunications

This paper surveys several applications of biased random-key genetic algorithms (BRKGA) in optimization problems that arise in telecommunications. We first review the basic concepts of BRKGA. This is followed by a description of BRKGA-based heuristics for routing in IP networks, design of survivable IP networks, redundant server location for content distribution, regenerator location in optical … Read more

The Maximum k-Colorable Subgraph Problem and Orbitopes

Given an undirected node-weighted graph and a positive integer k, the maximum k-colorable subgraph probem is to select a k-colorable induced subgraph of largest weight. The natural integer programming formulation for this problem exhibits a high degree of symmetry which arises by permuting the color classes. It is well known that such symmetry has negative … Read more

Random half-integral polytopes

We show that half-integral polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω(logn/loglogn) with positive probability — even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank … Read more