Extended formulations for convex hulls of some bilinear functions

We consider the problem of characterizing the convex hull of the graph of a bilinear function $f$ on the $n$-dimensional unit cube $[0,1]^n$. Extended formulations for this convex hull are obtained by taking subsets of the facets of the Boolean Quadric Polytope (BQP). Extending existing results, we propose the systematic study of properties of $f$ … Read more

Facets of a mixed-integer bilinear covering set with bounds on variables

We derive a closed form description of the convex hull of mixed-integer bilinear covering set with bounds on the integer variables. This convex hull description is determined by considering some orthogonal disjunctive sets defined in a certain way. This description does not introduce any new variables, but consists of exponentially many inequalities. An extended formulation … Read more

Error bounds for monomial convexification in polynomial optimization

Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of $[0,1]^n$. This … Read more

Locality sensitive heuristics for solving the Data Mule Routing Problem

A usual way to collect data in a Wireless Sensor Network (WSN) is by the support of a special agent, called data mule, that moves between sensor nodes and performs all communication between them. In this work, the focus is on the construction of the route that the data mule must follow to serve all … Read more

A Complete Characterization of Disjunctive Conic Cuts for Mixed Integer Second Order Cone Optimization

We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization problem. We extend our prior work on disjunctive conic cuts, which has thus far been restricted to the case in which the intersection of the hyperplanes and … Read more

A Second-Order Cone Based Approach for Solving the Trust Region Subproblem and Its Variants

We study the trust region subproblem (TRS) of minimizing a nonconvex quadratic function over the unit ball with additional conic constraints. Despite having a nonconvex objective, it is known that the TRS and a number of its variants are polynomial-time solvable. In this paper, we follow a second-order cone based approach to derive an exact … Read more

Quadratic Programs with Hollows

Let $\F$ be a quadratically constrained, possibly nonconvex, bounded set, and let $\E_1, \ldots, \E_l$ denote ellipsoids contained in $\F$ with non-intersecting interiors. We prove that minimizing an arbitrary quadratic $q(\cdot)$ over $\G := \F \setminus \cup_{k=1}^\ell \myint(\E_k)$ is no more difficult than minimizing $q(\cdot)$ over $\F$ in the following sense: if a given semidefinite-programming … Read more

Convex Hull Characterizations of Lexicographic Orderings

Given a p-dimensional nonnegative, integral vector α, this paper characterizes the convex hull of the set S of nonnegative, integral vectors x that is lexicographically less than or equal to α. To obtain a finite number of elements in S, the vectors x are restricted to be component-wise upper-bounded by an integral vector u. We … Read more

Tight second-stage formulations in two-stage stochastic mixed integer programs

We study two-stage stochastic mixed integer programs (TSS-MIPs) with integer variables in the second stage. We show that under suitable conditions, the second stage MIPs can be convexified by adding parametric cuts a priori. As special cases, we extend the results of Miller and Wolsey (Math Program 98(1):73-88, 2003) to TSS-MIPs. Furthermore, we consider second … Read more

Tight MIP Formulations of the Power-Based Unit Commitment Problem

This paper provides the convex hull description for the basic operation of slow- and quick-start units in power-based unit commitment (UC) problems. The basic operating constraints that are modeled for both types of units are: 1) generation limits and 2) minimum up and down times. Apart from this, the startup and shutdown processes are also … Read more