Single-layer Cuts for Multi-layer Network Design Problems

We study a planning problem arising in SDH/WDM multi-layer telecommunication network design. The goal is to find a minimum cost installation of link and node hardware of both network layers such that traffic demands can be realized via grooming and a survivable routing. We present a mixed-integer programming formulation that takes many practical side constraints … Read more

A Computational Study of Exact Knapsack Separation for the Generalized Assignment Problem

The Generalized Assignment Problem is a well-known NP-hard combinatorial optimization problem which consists of minimizing the assignment costs a set of jobs to a set of machines satisfying capacity constraints. Most of the existing algorithms are based on Branch-and-Price, with lower bounds computed by Dantzig-Wolfe reformulation and column generation. In this paper we propose a … Read more

A Robust Branch-Cut-and-Price Algorithm for the Heterogeneous Fleet Vehicle Routing Problem

This paper presents a robust branch-cut-and-price algorithm for the Heterogeneous Fleet Vehicle Routing Problem (HFVRP), vehicles may have various capacities and fixed costs. The columns in the formulation are associated to $q$-routes, a relaxation of capacitated elementary routes that makes the pricing problem solvable in pseudo-polynomial time. Powerful new families of cuts are also proposed, … Read more

A Short Note on the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development … Read more

MIP Reformulations of the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: $min \{ cx \ |\ {\mathbb P} (Ax\ge \xi) \ge p,\ x_{j}\in \{0,1\}^N\}$ where $A$ is a 0-1 matrix, $\xi$ is a random 0-1 vector and $p\in (0,1]$ is the threshold probability level. We formulate (PSC) as a mixed integer … Read more

Selective Gram-Schmidt orthonormalization for conic cutting surface algorithms

It is not straightforward to find a new feasible solution when several conic constraints are added to a conic optimization problem. Examples of conic constraints include semidefinite constraints and second order cone constraints. In this paper, a method to slightly modify the constraints is proposed. Because of this modification, a simple procedure to generate strictly … Read more

Cardinality Cuts: New Cutting Planes for 0-1 Programming

We present new valid inequalities that work in similar ways to well known cover inequalities.The differences exist in three aspects. First difference is in the generation of the inequalities. The method used in generation of the new cuts is more practical in contrast to classical cover inequalities. Second difference is the more general applicability, i.e., … Read more

An integer programming approach to the OSPF weight setting problem

Under the Open Shortest Path First (OSPF) protocol, traffic flow in an Internet Protocol (IP) network is routed on the shortest paths between each source and destination. The shortest path is calculated based on pre-assigned weights on the network links. The OSPF weight setting problem is to determine a set of weights such that, if … Read more

On the complexity of cutting plane proofs using split cuts

We prove that cutting-plane proofs which use split cuts have exponential length in the worst case. Split cuts, defined by Cook, Kannan, Schrijver (1993), are known to be equivalent to a number of other classes of cuts, namely mixed-integer rounding (MIR) cuts, Gomory mixed-integer cuts, and disjunctive cuts. Our result thus implies the exponential worst-case … Read more