On the strength of Gomory mixed-integer cuts as group cuts

Gomory mixed-integer (GMI) cuts generated from optimal simplex tableaus are known to be useful in solving mixed-integer programs. Further, it is well-known that GMI cuts can be derived from facets of Gomory’s master cyclic group polyhedron and its mixed-integer extension studied by Gomory and Johnson. In this paper we examine why cutting planes derived from … Read more

A Proximal Cutting Plane Method Using Chebychev Center for Nonsmooth Convex Optimization

An algorithm is developed for minimizing nonsmooth convex functions. This algorithm extends Elzinga-Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga-Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. Instead of lower approximations … Read more

Robust Branch-Cut-and-Price for the Capacitated Minimum Spanning Tree Problem over a Large Extended Formulation

This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to $q$-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arborescence probem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. … Read more

Extreme inequalities for infinite group problems

In this paper we derive new properties of extreme inequalities for infinite group problems. We develop tools to prove that given valid inequalities for the infinite group problem are extreme. These results show that integer infinite group problems have discontinuous extreme inequalities. These inequalities are strong when compared to related classes of continuous extreme inequalities. … Read more

An analytic center cutting plane approach for conic programming

We analyze the problem of finding a point strictly interior to a bounded, fully dimensional set from a finite dimensional Hilbert space. We generalize the results obtained for the LP, SDP and SOCP cases. The cuts added by our algorithm are central and conic. In our analysis, we find an upper bound for the number … Read more

Phylogenetic Analysis Via DC Programming

The evolutionary history of species may be described by a phylogenetic tree whose topology captures ancestral relationships among the species, and whose branch lengths denote evolution times. For a fixed topology and an assumed probabilistic model of nucleotide substitution, we show that the likelihood of a given tree is a d.c. (difference of convex) function … Read more

A second-order cone cutting surface method: complexity and application

We present an analytic center cutting surface algorithm that uses mixed linear and multiple second-order cone cuts. Theoretical issues and applications of this technique are discussed. From the theoretical viewpoint, we derive two complexity results. We show that an approximate analytic center can be recovered after simultaneously adding $p$ second-order cone cuts in $O(p\log(p+1))$ Newton … Read more

Semidefinite programming relaxations for graph coloring and maximal clique problems

The semidefinite programming formulation of the Lovasz theta number does not only give one of the best polynomial simultaneous bounds on the chromatic number and the clique number of a graph, but also leads to heuristics for graph coloring and extracting large cliques. This semidefinite programming formulation can be tightened toward either number by adding … Read more

Provisioning Virtual Private Networks under traffic uncertainty

We investigate a network design problem under traffic uncertainty which arises when provisioning Virtual Private Networks (VPNs): given a set of terminals that must communicate with one another, and a set of possible traffic matrices, sufficient capacity has to be reserved on the links of the large underlying public network so as to support all … Read more

A branch and cut algorithm for solving the linear and quadratic integer programming problems

This paper first presents an improve cutting plane method for solving the linear programming problems, based on the primal simplex method with the current equivalent facet technique, in which the increment of objection function is allowed as a pivot variable to decide the search step size. We obtain a strong valid inequality from the objective … Read more