Branch and price for nonlinear production-maintenance scheduling in complex machinery

This paper proposes a mixed-integer nonlinear programming approach for joint scheduling of long-term maintenance decisions and short-term production for groups of complex machines with multiple interacting components. We introduce an abstract model where the production and the condition of machines are described by convex functions, allowing the model to be employed for various application areas … Read more

Approximating value functions via corner Benders’ cuts

We introduce a novel technique to generate Benders’ cuts from a conic relaxation (“corner”) derived from a basis of a higher-dimensional polyhedron that we aim to outer approximate in a lower-dimensional space. To generate facet-defining inequalities for the epigraph associated to this corner, we develop a computationally-efficient algorithm based on a compact reverse polar formulation … Read more

Sensitivity Analysis in Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition is a well-known classical method for solving huge linear optimization problems with a block-angular structure. The most computationally expensive process in the method is pricing: solving block subproblems for a dual variable to produce new columns. Therefore, when we want to solve a slightly perturbated problem in which the block-angular structure is preserved … Read more

Recovering Dantzig-Wolfe Bounds by Cutting Planes

Dantzig-Wolfe (DW) decomposition is a well-known technique in mixed-integer programming (MIP) for decomposing and convexifying constraints to obtain potentially strong dual bounds. We investigate cutting planes that can be derived using the DW decomposition algorithm and show that these cuts can provide the same dual bounds as DW decomposition. More precisely, we generate one cut … Read more

On the Fairness of Aggregator’s Incentives in Residential Demand Response

The main motivation of this work is to provide an optimization-based tool for an aggregator involved in residential demand response (DR) programs. The proposed tool comply with the following requirements, which are widely accepted by the residential DR literature: (i) the aggregated consumption should be optimized under a particular utility’s target, such as the minimization … Read more

The vehicle allocation problem: alternative formulation and branch-and-price method

The Vehicle Allocation Problem (VAP) consists of repositioning empty vehicles across a set of terminals over a given planning horizon so as to maximize the profits generated from serving demand for transportation of goods between pair of terminals. This problem has been classically modeled using an extended space-time network which captures the staging of the … Read more

JuDGE.jl: a Julia package for optimizing capacity expansion

We present JuDGE.jl, an open-source Julia package for solving multistage stochastic capacity expansion problems using Dantzig-Wolfe decomposition. Models for JuDGE.jl are built using JuMP, the algebraic modelling language in Julia, and solved by repeatedly applying mixed-integer programming. We illustrate JuDGE.jl by formulating and solving a toy knapsack problem, and demonstrate the performance of JuDGE.jl on … Read more

Optimal Residential Users Coordination Via Demand Response: An Exact Distributed Framework

This paper proposes a two-phase optimization framework for users that are involved in demand response programs. In a first phase, responsive users optimize their own household consumption, characterizing not only their appliances and equipment but also their comfort preferences. Subsequently, the aggregator exploits in a second phase this preliminary noncoordinated solution by implementing a coordination … Read more

A branch-and-price method for the vehicle allocation problem

The Vehicle Allocation Problem (VAP) consists of allocating a fleet of vehicles to attend to the expected demand for freight transportation between terminals along a finite multiperiod planning horizon. The objective is to maximize the profits generated for the completed services. The previous deterministic and stochastic approaches used heuristic procedures and approximations for solving large-scale … Read more

Optimal Residential Users Coordination Via Demand Response: An Exact Distributed Framework

This paper proposes a two-phase optimization framework for users that are involved in demand response (DR) programs. In a first phase, responsive users optimize their own household consumption, characterizing not only their appliances and equipments but also their comfort preferences. Subsequently, the aggregator exploits in a second phase this preliminary non-coordinated solution by implementing a … Read more