Arc routing with electric vehicles: dynamic charging and speed-dependent energy consumption

Concerns about greenhouse gas emissions and government regulations foster the use of electric vehicles. Several recently published articles study the use of electric vehicles (EVs) in node-routing problems. In contrast, this article considers EVs in the context of arc routing while also addressing practically relevant aspects that have not been addressed sufficiently so far. These … Read more

Generalized Chvatal-Gomory closures for integer programs with bounds on variables

Integer programming problems that arise in practice often involve decision variables with one or two sided bounds. In this paper, we consider a generalization of Chvatal-Gomory inequalities obtained by strengthening Chvatal-Gomory inequalities using the bounds on the variables. We prove that the closure of a rational polyhedron obtained after applying the generalized Chvatal-Gomory inequalities is … Read more

A Generic Exact Solver for Vehicle Routing and Related Problems

Major advances were recently obtained in the exact solution of Vehicle Routing Problems (VRPs). Sophisticated Branch-Cut-and-Price (BCP) algorithms for some of the most classical VRP variants now solve many instances with up to a few hundreds of customers. However, adapting and reimplementing those successful algorithms for other variants can be a very demanding task. This … Read more

Integer Programming for Learning Directed Acyclic Graphs from Continuous Data

Learning directed acyclic graphs (DAGs) from data is a challenging task both in theory and in practice, because the number of possible DAGs scales superexponentially with the number of nodes. In this paper, we study the problem of learning an optimal DAG from continuous observational data. We cast this problem in the form of a … Read more

A Method for Convex Black-Box Integer Global Optimization

We study the problem of minimizing a convex function on the integer lattice when the function cannot be evaluated at noninteger points. We propose a new underestimator that does not require access to (sub)gradients of the objective but, rather, uses secant linear functions that interpolate the objective function at previously evaluated points. These linear mappings … Read more

A Computational Comparison of Optimization Methods for the Golomb Ruler Problem

The Golomb ruler problem is defined as follows: Given a positive integer n, locate n marks on a ruler such that the distance between any two distinct pair of marks are different from each other and the total length of the ruler is minimized. The Golomb ruler problem has applications in information theory, astronomy and … Read more

Identifying the Optimal Value Function of a Negative Markov Decision Process: An Integer Programming Approach

Mathematical programming formulation to identify the optimal value function of a negative Markov decision process (MDP) is non-convex, non-smooth, and computationally intractable. Also note that other well-known solution methods of MDP do not work properly for a negative MDP. More specifically, the policy iteration diverges, and the value iteration converges but does not provide an … Read more

Local Rapid Learning for Integer Programs

Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn … Read more

Best Subset Selection via Cross-validation Criterion

This paper is concerned with the cross-validation criterion for best subset selection in a linear regression model. In contrast with the use of statistical criteria (e.g., Mallows’ $C_p$, AIC, BIC, and various information criteria), the cross-validation only requires the mild assumptions, namely, samples are identically distributed, and training and validation samples are independent. For this … Read more

A New Extended Formulation with Valid Inequalities for the Capacitated Concentrator Location Problem

In this paper, we first present a new extended formulation of the Capacitated Concentrator Location Problem (CCLP) using the notion of cardinality of terminals assigned to a concentrator location. The disaggregated formulation consists of O(mn2) variables and constraints, where m denotes the number of concentrators and n the number of terminals. An immediate benefit of … Read more