Optimizing power generation in the presence of micro-grids

In this paper we consider energy management optimization problems in a future wherein an interaction with micro-grids has to be accounted for. We will model this interaction through a set of contracts between the generation companies owning centralized assets and the micro-grids. We will formulate a general stylized model that can, in principle, account for … Read more

Co-optimization of Demand Response and Reserve Offers for a Major Consumer

In this paper we present a stochastic optimization problem for a strategic major consumer who has flexibility over its consumption and can offer reserve. Our model is a bi-level optimization model (reformulated as a mixed-integer program) that embeds the optimal power flow problem, in which electricity and reserve are co-optimized. We implement this model for … Read more

Comparison of IP and CNF Models for Control of Automated Valet Parking Systems

In automated valet parking system, a central computer controls a number of robots which have the capability to move in two directions, under cars, lift a car up, carry it to another parking slot, and drop it. We study the theoretical throughput limitations of these systems: Given a car park layout, an initial configuration of … Read more

An optimization-based approach for delivering radio-pharmaceuticals to medical imaging centers

It is widely recognized that early diagnosis of most types of cancers can increase the chances of full recovery or substantially prolong the life of patients. Positron Emission Tomography (PET) has become the standard way to diagnose many types of cancers by generating high quality images of the affected organs. In order to create an … Read more

Flow formulations for curriculum-based course timetabling

In this paper we present two mixed-integer programming formulations for the curriculum based course timetabling problem (CTT). We show that the formulations contain underlying network structures by dividing the CTT into two separate models and then connect the two models using flow formulation techniques. The first mixed-integer programming formulation is based on an underlying minimum … Read more

On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem

We investigate three competing notions that generalize the notion of a facet of finite-dimensional polyhedra to the infinite-dimensional Gomory–Johnson model. These notions were known to coincide for continuous piecewise linear functions with rational breakpoints. We show that two of the notions, extreme functions and facets, coincide for the case of continuous piecewise linear functions, removing … Read more

Lattice closures of polyhedra

Given $P\subset\R^n$, a mixed-integer set $P^I=P\cap (\Z^{t}\times\R^{n-t}$), and a $k$-tuple of $n$-dimensional integral vectors $(\pi_1, \ldots, \pi_k)$ where the last $n-t$ entries of each vector is zero, we consider the relaxation of $P^I$ obtained by taking the convex hull of points $x$ in $P$ for which $ \pi_1^Tx,\ldots,\pi^T_kx$ are integral. We then define the $k$-dimensional … Read more

A parametric programming approach to redefine the global configuration of resource constraints of 0-1-Integer Linear Programming problems.

A mathematical programming approach to deal with the global configuration of resource constraints is presented. A specialized parametric programming algorithm to obtain the pareto set for the biobjective problem that appears to deal with the global configuration for 0-1-Integer Linear Programing problems is presented and implemented. Computational results for Multiconstrained Knapsack problems and Bounded Knapsack … Read more

Mixed Integer Quadratic Optimization Formulations for Eliminating Multicollinearity Based on Variance Inflation Factor

The variance inflation factor, VIF, is the most frequently used indicator for detecting multicollinearity in multiple linear regression models. This paper proposes two mixed integer quadratic optimization formulations for selecting the best subset of explanatory variables under upper-bound constraints on VIF of selected variables. Computational results illustrate the effectiveness of our optimization formulations based on … Read more

Improving the Randomization Step in Feasibility Pump

Feasibility pump (FP) is a successful primal heuristic for mixed-integer linear programs (MILP). The algorithm consists of three main components: rounding fractional solution to a mixed-integer one, projection of infeasible solutions to the LP relaxation, and a randomization step used when the algorithm stalls. While many generalizations and improvements to the original Feasibility Pump have … Read more