Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem

The Generalized Assignment Problem (GAP) is a classic scheduling problem with many applications. We propose a branch-and-cut-and-price for that problem featuring a stabilization mechanism to accelerate column generation convergence. We also propose ellipsoidal cuts, a new way of transforming the exact algorithm into a powerful heuristic, in the same spirit of the cuts recently proposed … Read more

An Improved Algorithm for Biobjective Integer Programs

A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed. The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time is asymptotically optimal. A number of extensions are described, including: a technique for handling weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version … Read more

Approximate fixed-rank closures of set covering problems

We show that for any fixed rank, the closure of a set covering problem (and related problems) can be approximated in polynomial time — we can epsilon-approximate any linear program over the closure in polynomial time. Citation CORC report TR-2003-01, Computational Optimization Research Center, Columbia University Article Download View Approximate fixed-rank closures of set covering … Read more

A p-Median Model for Assortment and Trim Loss Minimization with an Application to the Glass Industry

One of the main issues in the glass industry is the minimization of the trim loss generated when cutting large parts (stocks) into small items. In our application stocks are produced in the plant. Many distinct stock sizes are feasible, and technical constraints limit the variety of cutting patterns to those producing a single type … Read more

Solving Lift-and-Project Relaxations of Binary Integer Programs

We propose a method for optimizing the lift-and-project relaxations of binary integer programs introduced by Lov\’asz and Schrijver. In particular, we study both linear and semidefinite relaxations. The key idea is a restructuring of the relaxations, which isolates the complicating constraints and allows for a Lagrangian approach. We detail an enhanced subgradient method and discuss … Read more

Vehicle routing and staffing for sedan service

We present the optimization component of a decision support system developed for a sedan service provider. The system assists supervisors and dispatchers in scheduling driver shifts and routing the fleet throughout the day to satisfy customer demands within tight time windows. We periodically take a snapshot of the dynamic data and formulate an integer program, … Read more

Valid inequalities based on the interpolation procedure

We study the interpolation procedure of Gomory and Johnson (1972), which generates cutting planes for general integer programs from facets of master cyclic group polyhedra. This idea has recently been re-considered by Evans (2002) and Gomory, Johnson and Evans (2003). We compare inequalities generated by this procedure with mixed-integer rounding (MIR) based inequalities discussed in … Read more

Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra

We present a unifying framework to establish a lower-bound on the number of semidefinite programming based, lift-and-project iterations (rank) for computing the convex hull of the feasible solutions of various combinatorial optimization problems. This framework is based on the maps which are commutative with the lift-and-project operators. Some special commutative maps were originally observed by … Read more

Strong Formulations of Robust Mixed 0-1 Programming

We describe strong mixed-integer programming formulations for robust mixed 0-1 programming with uncertainty in the objective coefficients. In particular, we focus on an objective uncertainty set described as a polytope with a budget constraint. We show that for a robust 0-1 problem, there is a tight linear programming formulation with size polynomial in the size … Read more

A Polytope for a Product of Real Linear Functions in 0/1 Variables

In the context of integer programming, we develop a polyhedral method for linearizing a product of a pair of real linear functions in 0/1 variables. As an example, by writing a pair of integer variables in binary expansion, we have a technique for linearizing their product. We give a complete linear description for the resulting … Read more