How to project onto extended second order cones

The extended second order cones were introduced by S. Z. Németh and G. Zhang in [S. Z. Németh and G. Zhang. Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl., 168(3):756-768, 2016] for solving mixed complementarity problems and variational inequalities on cylinders. R. Sznajder in [R. Sznajder. The Lyapunov rank of extended … Read more

Differentiability properties of metric projections onto convex sets

It is known that directional differentiability of metric projection onto a closed convex set in a finite dimensional space is not guaranteed. In this paper we discuss sufficient conditions ensuring directional differentiability of such metric projections. The approach is based on a general theory of sensitivity analysis of parameterized optimization problems. ArticleDownload View PDF

String-Averaging Projected Subgradient Methods for Constrained Minimization

We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the Projected Subgradient Method (PSM), by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterative … Read more

Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the … Read more

A von Neumann Alternating Method for Finding Common Solutions to Variational Inequalities

Modifying von Neumann’s alternating projections algorithm, we obtain an alternating method for solving the recently introduced Common Solutions to Variational Inequalities Problem (CSVIP). For simplicity, we mainly confine our attention to the two-set CSVIP, which entails finding common solutions to two unrelated variational inequalities in Hilbert space. CitationNonlinear Analysis Series A: Theory, Methods & Applications, … Read more