A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

Machine learning theory typically assumes that training data is unbiased and not adversarially generated. When real training data deviates from these assumptions, trained models make erroneous predictions, sometimes with disastrous effects. Robust losses, such as the huber norm are designed to mitigate the effects of such contaminated data, but they are limited to the regression … Read more

ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS

We present a MATLAB implementation of the shape-changing sym- metric rank-one (SC-SR1) method that solves trust-region subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian matrix. The method takes advantage of two shape-changing norms [4, 3] to decompose the trust-region subproblem into two separate problems. Using one of … Read more

Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that noisy information about the gradients of the objective function is available via a stochastic first-order oracle ($\SFO$). We propose a general framework for such methods, for which we prove almost sure convergence to stationary points and analyze its worst-case … Read more

Globally Convergent Levenberg-Marquardt Method For Phase Retrieval

In this paper, we consider a nonlinear least squares model for the phase retrieval problem. Since the Hessian matrix may not be positive definite and the Gauss-Newton (GN) matrix is singular at any optimal solution, we propose a modified Levenberg-Marquardt (LM) method, where the Hessian is substituted by a summation of the GN matrix and … Read more

A Multi-step Inertial Forward–Backward Splitting Method for Non-convex Optimization

In this paper, we propose a multi-step inertial Forward–Backward splitting algorithm for minimizing the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the scheme with the help of the Kurdyka-Lojasiewicz property. Then, when the … Read more

A fresh CP look at mixed-binary QPs: New formulations and relaxations

Triggered by Burer’s seminal characterization from 2009, many copositive (CP) reformulations of mixed-binary QPs have been discussed by now. Most of them can be used as proper relaxations, if the intractable co(mpletely )positive cones are replaced by tractable approximations. While the widely used approximation hierarchies have the disadvantage to use positive-semidefinite (psd) matrices of orders … Read more

Pessimistic bilevel linear optimization

In this paper, we investigate the pessimistic bilevel linear optimization problem (PBLOP). Based on the lower level optimal value function and duality, the PBLOP can be transformed to a single-level while nonconvex and nonsmooth optimization problem. By use of linear optimization duality, we obtain a tractable and equivalent transformation and propose algorithms for computing global … Read more

On the computation of convex envelopes for bivariate functions through KKT conditions

In this paper we exploit a slight variant of a result previously proved in [11] to define a procedure which delivers the convex envelope of some bivariate functions over polytopes. The procedure is based on the solution of a KKT system and simplifies the derivation of the convex envelope with respect to previously proposed techniques. … Read more

Conditional gradient type methods for composite nonlinear and stochastic optimization

In this paper, we present a conditional gradient type (CGT) method for solving a class of composite optimization problems where the objective function consists of a (weakly) smooth term and a (strongly) convex regularization term. While including a strongly convex term in the subproblems of the classical conditional gradient (CG) method improves its rate of … Read more